Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4889878
1.
1. V. Goiffon, M. Estribeau, and P. Magnan, IEEE Trans. Electron Devices. 56, 2594 (2009).
http://dx.doi.org/10.1109/TED.2009.2030623
2.
2. H. I. Kwon, I. M. Kangol, B. G. Park, J. D. Lee, and S. S. Park, IEEE Trans. Electron Devices. 51, 174 (2004).
http://dx.doi.org/10.1109/TED.2003.821765
3.
3. J. Bogaerts and B. Dierickx, Proc. SPIE. 3965, 157 (2000).
http://dx.doi.org/10.1117/12.385432
4.
4. V. Goiffon, P. Magnan, O. Saint, F. Bernard, and G. Rolland, IEEE Trans. Nucl. Sci. 55, 3494 (2008).
http://dx.doi.org/10.1109/TNS.2008.2005294
5.
5. L. Ratti, C. Andreoli, L. Gaioni, M. Manghisoni, E. Pozzati, and V. Re, IEEE Trans. Nucl. Sci. 56, 2124 (2009).
http://dx.doi.org/10.1109/TNS.2009.2012427
6.
6. C. Virmontois, V. Goiffon, P. Magnan, O. Saint-pe, S. Girard, S. Petit, G. Rolland, and A. Bardoux, IEEE Trans. Nucl. Sci. 58, 3085 (2011).
http://dx.doi.org/10.1109/TNS.2011.2171005
7.
7. V. Goiffon, C. Virmontois, P. Magnan, S. Girard, and P. Paillet, IEEE Trans. Nucl. Sci. 57, 3087 (2010).
8.
8. J. Bogaerts, B. Dierickx, G. Meynants, and D. Uwaerts, IEEE Trans. Elec. Dev. 50, 84 (2003).
http://dx.doi.org/10.1109/TED.2002.807251
9.
9. G. R. Hopkinson, IEEE Trans. Nucl. Sci. 51, 2573 (2004).
http://dx.doi.org/10.1109/TNS.2004.835108
10.
10. E. S. Eide, T. Y. Chan, E. R. Fossum, R. H. Tsai, R. Spagnuolo, J. Deily, W. B. Byers, and J. C. Peden, IEEE Trans. Nucl. Sci. 48, 1796 (2001).
http://dx.doi.org/10.1109/23.983133
11.
11. C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-pe, S. Petit, G. Rolland, and A. Bardoux, IEEE Trans. Nucl. Sci. 59, 927 (2012).
http://dx.doi.org/10.1109/TNS.2012.2203317
12.
12. C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-pe, IEEE Trans. Nucl. Sci. 57, 3101 (2010).
13.
13. G. R. Hopkinson, “Radiation effects in a CMOS active pixel sensor,” IEEE Trans. Nucl. Sci. 47, 2480 (2000).
http://dx.doi.org/10.1109/23.903796
14.
14. M. Deveaux, G. Claus, G. Deptuch, W. Dulinski, Y. Gornushkin, and M. Winter, Nucl. Instr, Meth. A 512, 71 (2003).
http://dx.doi.org/10.1016/S0168-9002(03)01878-3
15.
15. C. Virmontois, V. Goiffon, F. Corbiere, P. Magnan, S. Girard, S. Petit, and A. Bardoux, IEEE Trans. Nucl. Sci. 59, 2872 (2012).
http://dx.doi.org/10.1109/TNS.2012.2224129
16.
16. S. Zucda, L. Ratti, G. Traversi, S. Bettarini, F. Morsani, G. Rizzo, L. Bosisio, I. Rashevskaya, and V. Cindro, IEEE Trans. Nucl. Sci. 59, 900 (2012).
http://dx.doi.org/10.1109/TNS.2012.2189017
17.
17. G. R. Hopkinson, Rad. Effects on Compon. Syst. 401 (1993).
18.
18. M. Cohen and J. P. David, IEEE Trans. Nucl. Sci. 47, 2485 (2000).
http://dx.doi.org/10.1109/23.903797
19.
19. J. R. Srour, C. J. Marshall, and P. W. Marshall, IEEE Trans. Nucl. Sci. 50, 653 (2003).
http://dx.doi.org/10.1109/TNS.2003.813197
20.
20. J. R. Srour and D. H. Lo, IEEE Trans. Nucl. Sci. 47, 2451 (2000).
http://dx.doi.org/10.1109/23.903792
21.
21. M. Beaumel, D. Herve, and D. V. Aken, IEEE Trans. Nucl. Sci. 57, 2056 (2010).
http://dx.doi.org/10.1109/TNS.2010.2048043
22.
22. J. Bogaerts, B. Dierickx, and R. Mertens, IEEE Trans. Nucl. Sci. 49, 1513 (2002).
http://dx.doi.org/10.1109/TNS.2002.1039695
23.
23. J. R. Srour, R. A. Hartmann, and K. S. Kitazaki, IEEE Trans. Nucl. Sci. NS-33, 1597 (1986).
http://dx.doi.org/10.1109/TNS.1986.4334648
24.
24. M. S. Robbins, IEEE Trans. Nucl. Sci. 47, 2473 (2000).
http://dx.doi.org/10.1109/23.903795
25.
25. P. W. Marshall, C. J. Dale, E. A. Burke, G. P. Summers, and G. E. Bender, IEEE Trans. Nucl. Sci. 36, 1831 (1989).
http://dx.doi.org/10.1109/23.45376
26.
26. A. Pelamatti, V. Goiffon, M. Rstribeau, P. Cervantes, and P. Magnan, IEEE, Electron. Device let. 34, 900 (2012).
http://dx.doi.org/10.1109/LED.2013.2260523
27.
27. G. R. Hopkinson, IEEE Trans. Nucl. Sci. 47, 2460 (2000).
http://dx.doi.org/10.1109/23.903793
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4889878
Loading
/content/aip/journal/adva/4/7/10.1063/1.4889878
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4889878
2014-07-09
2016-09-27

Abstract

The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 108 n/cm2s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 1011, 5 × 1011, and 1 × 1012 n/cm2, respectively. The mean dark signal ( ), dark signal spike, dark signal non-uniformity (DSNU), noise ( ), saturation output signal voltage ( ), and dynamic range (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4889878.html;jsessionid=5g_IKznmcbE4zb0LfKLPMRNH.x-aip-live-02?itemId=/content/aip/journal/adva/4/7/10.1063/1.4889878&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4889878&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4889878'
Right1,Right2,Right3,