1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Synchronization in node of complex networks consist of complex chaotic system
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/7/10.1063/1.4890097
1.
1. X. Z. Jin and G. H. Yang, Communications in Nonlinear Science and Numerical Simulation 19, 1985 (2014).
http://dx.doi.org/10.1016/j.cnsns.2013.10.030
2.
2. L. L. Li, Y. Liu, and Q. Y. Yao, Journal of Zhenjiang university of science c computer & electronics 15, 211 (2014).
http://dx.doi.org/10.1631/jzus.C1300266
3.
3. L. , C. R. Li, L. S. Chen, and L. L. Wei, Communications in Nonlinear Science and Numerical Simulation 19, 2843 (2014).
http://dx.doi.org/10.1016/j.cnsns.2013.12.027
4.
4. R. F. Zhang, D. Y. Chen, Y. H. Do, and X. Y. Ma, Journal of vibration and control 120, (2014).
http://dx.doi.org/10.1177/1077546314522506
5.
5. D. Y. Chen, W. L. Zhao, J. L. C. Sprott, and X. Y. Ma, Nonlinear Dynamics 73, 1495 (2013).
http://dx.doi.org/10.1007/s11071-013-0880-1
6.
6. L. Luo, Y. H. Wang, and S. Q. Deng, International Journal of control automation and system 12, 259 (2014).
http://dx.doi.org/10.1007/s12555-013-0421-1
7.
7. Y. Li, Y. L. Zhao, and Z. A. Yao, International Journal of Modern Physics B 28, 1450058 (2014).
http://dx.doi.org/10.1142/S0217979214500581
8.
8. D. Y. Chen, R. F. Zhang, X. Z. Liu, and X. Y. Ma, Communications in Nonlinear Science and Numerical Simulation 19, 4105 (2014).
http://dx.doi.org/10.1016/j.cnsns.2014.05.005
9.
9. D. Y. Chen, R. F. Zhang, J. C. Sprott, H. T. Chen, and X. Y. Ma, Chaos 22, 023130 (2012).
http://dx.doi.org/10.1063/1.4721996
10.
10. D. Y. Chen, C. Wu, H. H.C. Iu, X. Y. Ma, Nonlinear Dynamics 73, 1671 (2013).
http://dx.doi.org/10.1007/s11071-013-0894-8
11.
11. F. F. Zhang, S. T. Liu, and W. Y. Yong, Chinese Physics B 22, 120505 (2013).
http://dx.doi.org/10.1088/1674-1056/22/12/120505
12.
12. L. Zhang, X. L. Yang, and Z. K. Shun, Acta physica sinica 62, 240502 (2013).
13.
13. D. F. Wang, J. Y. Zhang, and X. Y. Wang, Chinese Physics B 22, 100504 (2013).
http://dx.doi.org/10.1088/1674-1056/22/10/100504
14.
14. Z. Y. Wu and X. C. Fu, Nonlinear Dynamics 72, 9 (2013).
http://dx.doi.org/10.1007/s11071-012-0685-7
15.
15. Q. T. Gan, R. Xu, and X. B. Kang, Communications in Nonlinear Science and Numerical Simulation 16, 966 (2011).
http://dx.doi.org/10.1016/j.cnsns.2010.04.036
16.
16. X. J. Wu and H. T. Lu, Physics Letters A 374, 3932 (2010).
http://dx.doi.org/10.1016/j.physleta.2010.07.059
17.
17. H. Dai, G. Q. Si, and L. X. Jia, Physica Scripta 88, 055006 (2013).
http://dx.doi.org/10.1088/0031-8949/88/05/055006
18.
18. D. Ghosh and B. K. Bhattacharyya, AIP ADVANCES 1, 032144 (2011).
http://dx.doi.org/10.1063/1.3631773
19.
19. Z. Y. Wu, J. Duan, and X. C. Fu, Nonlinear Dynamics 69, 771 (2012).
http://dx.doi.org/10.1007/s11071-011-0303-0
20.
20. Z. Y. Wu and X. C. Fu, Nonlinear Dynamics 72, 9 (2013).
http://dx.doi.org/10.1007/s11071-012-0685-7
21.
21. X. F. Wu and Z. Nie, Discrete Dynamics in Nature and Society, 2014;ID 965297, 8 pages.
http://dx.doi.org/10.1155/2014/965297
22.
22. J. Q. Lu and J. D. Cao, Physica A 382, 672 (2007).
http://dx.doi.org/10.1016/j.physa.2007.04.021
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4890097
Loading
/content/aip/journal/adva/4/7/10.1063/1.4890097
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4890097
2014-07-11
2014-11-24

Abstract

A new synchronization method is investigated for node of complex networks consists of complex chaotic system. When complex networks realize synchronization, different component of complex state variable synchronize up to different scaling complex function by a designed complex feedback controller. This paper change synchronization scaling function from real field to complex field for synchronization in node of complex networks with complex chaotic system. Synchronization in constant delay and time-varying coupling delay complex networks are investigated, respectively. Numerical simulations are provided to show the effectiveness of the proposed method.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4890097.html;jsessionid=57tqscgsn3hfo.x-aip-live-06?itemId=/content/aip/journal/adva/4/7/10.1063/1.4890097&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Synchronization in node of complex networks consist of complex chaotic system
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4890097
10.1063/1.4890097
SEARCH_EXPAND_ITEM