Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4890100
1.
1. S. A. Maier, Plasmonics: fundamentals and applications, 1st ed. (Springer, New York, 2007).
2.
2. W. Jiang, B. Y. S. Kim, J. T. Rutka, and W. C. W. Chan, “Nanoparticle-mediated cellular response is size-dependent,” Nat. Nanotechnol. 3, 145 (2008).
http://dx.doi.org/10.1038/nnano.2008.30
3.
3. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238 (2006).
http://dx.doi.org/10.1021/jp057170o
4.
4. B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).
http://dx.doi.org/10.1038/nmat2810
5.
5. M. Rahmani, B. Luk'yanchuk, and M. H. Hong, “Fano resonance in novel plasmonic nanostructures,” Laser Photon. Rev. 7, 329 (2013).
http://dx.doi.org/10.1002/lpor.201200021
6.
6. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.047401
7.
7. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983 (2008).
http://dx.doi.org/10.1021/nl802509r
8.
8. W. Cao, R. Singh, I. A. I. Al-Naib, M. X. He, A. J. Taylor, and W. L. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366 (2012).
http://dx.doi.org/10.1364/OL.37.003366
9.
9. D. DeJarnette, P. Blake, G. T. Forcherio, and D. K. Roper, “Far-field Fano resonance in nanoring lattices modeled from extracted, point dipole polarizability,” J. Appl. Phys. 115, 024306 (2014).
http://dx.doi.org/10.1063/1.4858396
10.
10. V. Dillu and R. K. Sinha, “Enhanced Fano resonance in silver ellipsoidal plasmonic crystal cavity,” J. Appl. Phys. 114, 234305 (2013).
http://dx.doi.org/10.1063/1.4851775
11.
11. Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Shan, Q. Q. Wang, and Z. Zhang, “Tuning Gold Nanorod-Nanoparticle Hybrids into Plasmonic Fano Resonance for Dramatically Enhanced Light Emission and Transmission,” Nano Lett. 11, 49 (2010).
http://dx.doi.org/10.1021/nl1026869
12.
12. H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754 (2011).
http://dx.doi.org/10.1021/nn202317b
13.
13. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: A route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11, 1657 (2011).
http://dx.doi.org/10.1021/nl200135r
14.
14. H. Liu, X. Wu, B. Li, C. Xu, G. Zhang, and L. Zheng, “Fano resonance in two-intersecting nanorings: Multiple layers of plasmon hybridizations,” Appl. Phys. Lett. 100, 153114 (2012).
http://dx.doi.org/10.1063/1.3702884
15.
15. H. Lu, X. M. Liu, D. Mao, and G. X. Wang, “Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators,” Opt. Lett. 37, 3780 (2012).
http://dx.doi.org/10.1364/OL.37.003780
16.
16. F. Hao, P. Nordlander, Y. Sonnefraud, P. V. Dorpe, and S. A. Maier, “Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: Implications for nanoscale optical sensing,” ACS Nano 3, 643 (2009).
http://dx.doi.org/10.1021/nn900012r
17.
17. Y. F. Xiao, X. F. Jiang, Q. F. Yang, L. Wang, K. Shi, Y. Li and Q. Gong, “Tunneling-induced transparency in a chaotic microcavity,” Laser Photonics Rev. 7, L51 (2013).
http://dx.doi.org/10.1002/lpor.201300042
18.
18. P. Alonso-González, M. Schnell, P. Sarriugarte, H. Sobhani, C. Wu, N. Arju, A. Khanikaev, F. Golmar, P. Albella, L. Arzubiaga, F. Casanova, L. E. Hueso, P. Nordlander, G. Shvets, and R. Hillenbrand, “Real-space mapping of Fano interference in plasmonic metamolecules,” Nano Lett. 11, 3922 (2011).
http://dx.doi.org/10.1021/nl2021366
19.
19. J. Chen, Q. Shen, Z. Chen, Q. Wang, C. Tang, and Z. Wang, “Multiple Fano resonances in monolayer hexagonal non-close-packedmetallic shells,” J. Chem. Phys. 136, 214703 (2012).
http://dx.doi.org/10.1063/1.4725539
20.
20. D. Dregely, M. Hentschel, and H. Giessen, “Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters,” ACS Nano 5, 8202 (2011).
http://dx.doi.org/10.1021/nn202876k
21.
21. Y. Cui, J. Zhou, V. A. Tamma, and W. Park, “Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure,” ACS Nano 6, 2385 (2012).
http://dx.doi.org/10.1021/nn204647b
22.
22. S. D. Liu, Z. Yang, R. P. Liu, and X. Y. Li, “Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings,” ACS Nano 6, 6260 (2012).
http://dx.doi.org/10.1021/nn3017052
23.
23. S. D. Liu, Y. B. Yang, Z. H. Chen, W. J. Wang, H. M. Fei, M. J. Zhang, and Y. C. Wang, “Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry,” J. Phys. Chem. C 117, 14218 (2013).
http://dx.doi.org/10.1021/jp404575v
24.
24. Y. Wang, Z. Li, K. Zhao, A. Sobhani, X. Zhu, Z. Fang, and N. J. Halas, “Substrate-mediated charge transfer plasmons in simple and complex nanoparticle clusters,” Nanoscale 5, 9897 (2013).
http://dx.doi.org/10.1039/c3nr02835f
25.
25. Z. J. Yang, Q. Q. Wang, and H. Q. Lin, “Tunable two types of Fano resonances in metal–dielectric core–shell nanoparticle clusters,” Appl. Phys. Lett. 103, 111115 (2013).
http://dx.doi.org/10.1063/1.4821187
26.
26. J. Zhang and A. Zayats, “Multiple Fano resonances in single-layer nonconcentric core-shell nanostructures,” Opt. Express 21, 8426 (2013).
http://dx.doi.org/10.1364/OE.21.008426
27.
27. J. Wang, C. Fan, J. He, P. Ding, E. Liang, and Q. Xue, “Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity,” Opt. Express 21, 2236 (2013).
http://dx.doi.org/10.1364/OE.21.002236
28.
28. Y. Zhang, T. Q. Jia, H. M. Zhang, and Z. Z. Xu, “Fano resonances in disk–ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode,” Opt. Lett. 37, 4919 (2012).
http://dx.doi.org/10.1364/OL.37.004919
29.
29. A. D. Khan, S. D. Khan, R. U. Khan, and N. Ahmad, “Excitation of multiple Fano-like resonances induced by higher order plasmon modes in three-layered bimetallic nanoshell dimer,” Plasmonics 9, 461 (2014).
http://dx.doi.org/10.1007/s11468-013-9644-5
30.
30. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano Resonances in Individual Coherent Plasmonic Nanocavities,” Nano Lett. 9, 1663 (2009).
http://dx.doi.org/10.1021/nl9001876
31.
31. Y. H. Fu, J. B. Zhang, Y. F. Yu, and B. Luk′yanchuk, “Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures,” ACS Nano 6, 5130 (2012).
http://dx.doi.org/10.1021/nn3007898
32.
32. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407 (2011).
http://dx.doi.org/10.1126/science.1199958
33.
33. A. Artar, A. A. Yanik, and H. Altug, “Directional double Fano resonances in plasmonic hetero-oligomers,” Nano Lett. 11, 3694 (2011).
http://dx.doi.org/10.1021/nl201677h
34.
34. N. Liu, S. Mukherjee, K. Bao, L. V. Brown, J. Dorfmüller, P. Nordlander, and N. J. Halas, “Magnetic plasmon formation and propagation in artificial aromatic molecules,” Nano Lett. 12, 364 (2012).
http://dx.doi.org/10.1021/nl203641z
35.
35. B. B. Li, Y. F. Xiao, C. L. Zou, Y. C. Liu, X. F. Jiang, Y. L. Chen, Y. Li, and Q. Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
http://dx.doi.org/10.1063/1.3541884
36.
36. Y. Zhang, F. Wen, Y. R. Zhen, P. Nordlander, and N. J. Halas, “Coherent Fano resonances in a plasmonic nanocluster enhance optical four-wave mixing,” Proc. Natl. Acad. Sci. U. S. A. 110, 9215 (2013).
http://dx.doi.org/10.1073/pnas.1220304110
37.
37. Q. Zhang, X. Wen, G. Li, Q. Ruan, J. Wang, and Q. Xiong, “Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities,” ACS Nano 7, 11071 (2013).
http://dx.doi.org/10.1021/nn4047716
38.
38. J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012).
http://dx.doi.org/10.1063/1.4757961
39.
39. Z. J. Yang, Z. S. Zhang, L. H. Zhang, Q. Q. Li, Z. H. Hao, and Q. Q. Wang, “Fano resonances in dipole-quadrupole plasmon coupling nanorod dimers,” Opt. Lett. 36, 1542 (2011).
http://dx.doi.org/10.1364/OL.36.001542
40.
40. M. Abb, Y. Wang, P. Albella, C. H. de Groot, J. Aizpurua, and O. L. Muskens, “Interference, coupling, and nonlinear control of high-order modes in single asymmetric nanoantennas,” ACS Nano 6, 6462 (2012).
http://dx.doi.org/10.1021/nn3021579
41.
41. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135 (2010).
http://dx.doi.org/10.1126/science.1187949
42.
42. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, “Transition from isolated to collective modes in plasmonic oligomers,” Nano Lett. 10, 2721 (2010).
http://dx.doi.org/10.1021/nl101938p
43.
43. M. Rahmani, B. Luk'yanchuk, T. Tahmasebi, Y. Lin, T. Liew, and M. Hong, “Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers,” Appl. Phys. A: Mater. Sci. Process. 107, 23 (2012).
http://dx.doi.org/10.1007/s00339-011-6732-2
44.
44. M. Rahmani, E. Yoxall, B. Hopkins, Y. Sonnefraud, Y. Kivshar, M. Hong, C. Phillips, S. A. Maier, and A. E. Miroshnichenko, “Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution,” ACS Nano 7, 11138 (2013).
http://dx.doi.org/10.1021/nn404869c
45.
45. M. Rahmani, D. Y. Lei, V. Giannini, B. Luk'yanchuk, M. Ranjbar, T. Y. F. Liew, M. H. Hong, and S. A. Maier, “Subgroup Decomposition of Plasmonic Resonances in Hybrid Oligomers: Modeling the Resonance Lineshape,” Nano Lett. 12, 2101 (2012).
http://dx.doi.org/10.1021/nl3003683
46.
46. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters,” Nano Lett. 12, 1058 (2012).
http://dx.doi.org/10.1021/nl204303d
47.
47. M. Rahmani, B. Luk'yanchuk, T. T. V. Nguyen, T. Tahmasebi, Y. Lin, T. Y. F. Liew, and M. H. Hong, “Influence of symmetry breaking in pentamers on Fano resonance and near-field energy localization,” Opt. Mater. Express 1, 1409 (2011).
http://dx.doi.org/10.1364/OME.1.001409
48.
48. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419 (2003).
http://dx.doi.org/10.1126/science.1089171
49.
49. J. Li, Y. Zhang, T. Jia, and Z. Sun, “High tunability multipolar Fano resonances in dual-ring/disk cavities,” Plasmonics (2014).
http://dx.doi.org/10.1007/s11468-014-9738-8
50.
50. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2005).
51.
51. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
52.
52. H. Chen, L. Shao, T. Ming, K. C. Woo, Y. C. Man, J. Wang, and H. Q. Lin, “Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates,” ACS Nano 5, 6754 (2011).
http://dx.doi.org/10.1021/nn202317b
53.
53. F. Hao, P. Nordlander, M. T. Burnett, and S. A. Maier, “Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities,” Phys. Rev. B 76, 245417 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.245417
54.
54. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index,” J. Phys. Chem. B 109, 20331 (2005).
http://dx.doi.org/10.1021/jp054385p
55.
55. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280 (2011).
http://dx.doi.org/10.1021/nl1043242
56.
56. P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110, 203902 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.203902
57.
57. J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Akerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7, 2341 (2011).
http://dx.doi.org/10.1002/smll.201100640
58.
58. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
http://dx.doi.org/10.1126/science.1111886
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4890100
Loading
/content/aip/journal/adva/4/7/10.1063/1.4890100
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4890100
2014-07-10
2016-12-08

Abstract

Dark mode which is subradiant plays a key role in the generation of Fano effect. This study proposes that plasmon interaction between dark modes is a favorable method to generate multiple Fano resonances, where plasmon hybridization leads to the formation of a subradiant bonding and a subradiant antibonding combination. It demonstrates that a concentric ring/ring cavity dimer introduces interactions that render bonding quadrupolar ring mode dipole active, resulting in a pronounced Fano resonance. The corresponding antibonding quadrupolar ring mode is excited in a symmetry breaking nonconcentric cavity dimer, and double Fano resonances appear in the spectra.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4890100.html;jsessionid=uKpxCsVruj8wGWb0iVX6UL1i.x-aip-live-06?itemId=/content/aip/journal/adva/4/7/10.1063/1.4890100&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4890100&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4890100'
Right1,Right2,Right3,