Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4890214
1.
1. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, Mater. Sci. Eng. A 334, 173 (2002).
http://dx.doi.org/10.1016/S0921-5093(01)01807-X
2.
2. A. H. Barber, R. Andrews, L. S. Schadler, and H. D. Wagner, Appl. Phys. Lett. 87, 203106 (2005).
http://dx.doi.org/10.1063/1.2130713
3.
3. C. Lu, Appl. Phys. Lett. 92, 206101 (2008).
http://dx.doi.org/10.1063/1.2927304
4.
4. H. D. Wagner, A. H. Barber, R. Andrews, and L. S. Schadler, Appl. Phys. Lett. 92, 206102 (2008).
http://dx.doi.org/10.1063/1.2927305
5.
5. N. M. Pugno and R. S. Ruoff, J. Appl. Phys. 99, 024301 (2006).
http://dx.doi.org/10.1063/1.2158491
6.
6. C. A. Klein, J. Appl. Phys. 101, 124909 (2007).
http://dx.doi.org/10.1063/1.2749337
7.
7. C. Lu, R. Danzer, and F. D. Fischer, Phys. Rev. E 65, 067102 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.067102
8.
8. A. M. Freudenthal, “Statistical approach to brittle fracture,” Fracture: An Advanced Treatise, edited by H. Liebowitz (Academic Press, New York, 1968), Vol. 2, p. 591.
9.
9. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 287, 637 (2000).
http://dx.doi.org/10.1126/science.287.5453.637
10.
10. M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Physical Review Letters 84, 5552 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5552
11.
11. R. Agrawal, B. Peng, and H. D. Espinosa, Nano Letters 9, 4177 (2009).
http://dx.doi.org/10.1021/nl9023885
12.
12. Y. Y. Huang, T. P. Knowles, and E. M. Terentjev 21, 3945 (2009).
13.
13. J. L. Le, Z. P. Bažant, and M. Z. Bazant, Journal of the Mechanics and Physics of Solids 59, 1291 (2011).
http://dx.doi.org/10.1016/j.jmps.2011.03.002
14.
14. A. A. Griffith, Philosophical Transactions of the Royal Society of London A 221, 163 (1921).
http://dx.doi.org/10.1098/rsta.1921.0006
15.
15. P. G. Collins, “Defects and disorder in carbon nanotubes,” In Oxford Handbook of Nanoscience and Technology: Frontiers and Advances, edited by A. V. Narlikar and Y. Y. Fu (Oxford University Press, Oxford, 2010).
16.
16. N. L. Johnson, S. Kotz, and A. W. Kemp, Univariate Discrete Distributions, 2nd ed. (Wiley, 1993).
17.
17. S. Zhang, S. L. Mielke, R. Khare, D. Troya, R. S. Ruoff, G. C. Schatz, and T. Belytschko, Phys. Rev. B 71, 115403 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115403
18.
18. D. G. Harlow and S. L. Phoenix, J. Comp. Mater. 12, 195 (1978).
http://dx.doi.org/10.1177/002199837801200207
19.
19. I. J. Beyerlein and S. L. Phoenix, Composite Science and Technology 56, 75 (1996).
http://dx.doi.org/10.1016/0266-3538(95)00131-X
20.
20. I. J. Beyerlein and S. L. Phoenix, Engineering Fracture Mechanics 57, 241 (1997).
http://dx.doi.org/10.1016/S0013-7944(97)00012-X
21.
21. P. M. Duxbury, P. L. Leath, and P. D. Beale, Phys. Rev. B 36, 367 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.367
22.
22. C. Manzato, A. Shekhawat, P. K. V. V. Nukala, M. J. Alava, J. P. Sethna, and S. Zapperi, Phys. Rev. Lett. 108, 065504 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.065504
23.
23. X. F. Xu, Y. Jie, and I. J. Beyerlein, Computers, Materials & Continua 38, 17 (2013).
24.
24. B. R. Lawn, Fracture of Brittle Solids, Cambridge Solid State Science Series, 2nd Edn. 1993.
25.
25. R. A. Fisher and L. H. C. Tippett, Proc. Cambridge Philos. Soc. 24, 180 (1928).
http://dx.doi.org/10.1017/S0305004100015681
26.
26. E. J. Gumbel, Statistics of Extremes, (Columbia University Press, 1958), ISBN 0-483-43604-7.
27.
27. Y. S. Li and P. M. Duxbury, Phys. Rev. B 36, 5411 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.5411
28.
28. S. L. Phoenix and I. J. Beyerlein, Physical Review E 62, 1622 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.1622
29.
29. I. J. Beyerlein, P. K. Porwal, Y. T. Zhu, K. Hu, and X. F. Xu, Nanotechnology 20, 485702 (2009).
http://dx.doi.org/10.1088/0957-4484/20/48/485702
30.
30. X. F. Xu, K. Hu, I. J. Beyerlein, and G. Deodatis, International Journal for Uncertainty Quantification 1, 279 (2011).
http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2011002456
31.
31. H. E. Daniels, Proc. R. Soc. A 183, 405 (1945).
http://dx.doi.org/10.1098/rspa.1945.0011
32.
32. A. H. Barber, I. Kaplan-Ashiri, S. R. Cohen, R. Tenne, and H. D. Wagner, Compos. Sci. Technol. 65, 23804 (2005).
http://dx.doi.org/10.1016/j.compscitech.2005.07.021
33.
33. B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, and H. D. Espinosa, Nat. Nano. 3, 626 (2008).
http://dx.doi.org/10.1038/nnano.2008.211
34.
34. S. L. Phoenix, P. Schwartz, and H. H. Robinson, Composites Science and Technology, 32, 81 (1988).
http://dx.doi.org/10.1016/0266-3538(88)90001-2
35.
35. H. Otani, S. L. Phoenix, and P. Petrina, Journal of Materials Science, 26, 1955 (1991).
http://dx.doi.org/10.1007/BF00543630
36.
36. I. J. Beyerlein, S. L. Phoenix, and A. M. Sastry, Int. J. Solids and Structures, 33, 2543 (1996).
http://dx.doi.org/10.1016/0020-7683(95)00172-7
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4890214
Loading
/content/aip/journal/adva/4/7/10.1063/1.4890214
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4890214
2014-07-11
2016-12-08

Abstract

A longstanding controversy exists on the form of the probability distribution for the strength of carbon nanotubes: is it Weibull, lognormal, or something else? We present a theory for CNT strength through integration of weakest link scaling, flaw statistics, and brittle fracture. The probability distribution that arises exhibits multiple regimes, each of which takes the form of a Weibull distribution. Our model not only gives a possible resolution to the debate but provides a way to attain reliable estimates of CNT strength for materials design from practical-sized (non-asymptotic) data sets of CNT strength. Last, the model offers an explanation for the severe underestimation of CNT strength from strength tests of CNT bundles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4890214.html;jsessionid=Jy3vxTQzWrg26TiJc65jIbdz.x-aip-live-02?itemId=/content/aip/journal/adva/4/7/10.1063/1.4890214&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4890214&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4890214'
Right1,Right2,Right3,