Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4890305
1.
1. S. Yoshikawa, Nucl. Fusion 13, 433 (1973).
http://dx.doi.org/10.1088/0029-5515/13/3/015
2.
2. S. Yoshikawa, Phys. Fluids 11, 2777 (1968).
http://dx.doi.org/10.1063/1.1691895
3.
3. J. C. Sprott and S. C. Prager, Nucl. Fusion 25, 1179 (1985).
http://dx.doi.org/10.1088/0029-5515/25/9/031
4.
4. M. W. Maisel et al., Nucl. Fusion 25, 1113 (1985).
http://dx.doi.org/10.1088/0029-5515/25/9/022
5.
5. D. T. Garnier et al., Fusion Eng. Des. 81, 2371 (2006).
http://dx.doi.org/10.1016/j.fusengdes.2006.07.002
6.
6. H. Saitoh et al., Nucl. Fusion 51, 063034 (2011).
http://dx.doi.org/10.1088/0029-5515/51/6/063034
7.
7. H. Saitoh et al., Phys. Plasmas 17, 112111 (2010).
http://dx.doi.org/10.1063/1.3514207
8.
8. R. A. Lane and C. A. Ordonez, AIP Conf. Proc. 1525, 97 (2013).
http://dx.doi.org/10.1063/1.4802298
9.
9. T. Uchida, Jpn. J. Appl. Phys. 33, L43 (1994).
http://dx.doi.org/10.1143/JJAP.33.L43
10.
10. Z. Yoshida and T. Uchida, Jpn. J. Appl. Phys. 34, 4213 (1995).
http://dx.doi.org/10.1143/JJAP.34.4213
11.
11. J. D. Wofford and C. A. Ordonez, AIP Conf. Proc. 1525, 106 (2013).
http://dx.doi.org/10.1063/1.4802300
12.
12. A. M. Bishaev, A. A. Bush, I. V. Gladyshev, K. Y. Kamentsev, and M. V. Kozintseva, Probl. of Sci. Technol. 17, 35 (2011).
13.
13. M. M. Tsventoukh, Plasma Phys. Rep. 33, 535 (2007).
http://dx.doi.org/10.1134/S1063780X07070021
14.
14. J. R. Rocha, R. M. Hedlof, and C. A. Ordonez, AIP Adv. 3, 102129 (2013).
http://dx.doi.org/10.1063/1.4827498
15.
15. C. A. Ordonez and R. M. Hedlof, AIP Adv. 2, 012176 (2012).
http://dx.doi.org/10.1063/1.3698146
16.
16. G. B. Andresen et al., Nature 468, 673 (2010).
http://dx.doi.org/10.1038/nature09610
17.
17. C. Amole et al., Phys. Plasmas 20, 043510 (2013).
http://dx.doi.org/10.1063/1.4801067
18.
18. G. Gabrielse et al., Phys. Rev. Lett. 108, 113002 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.113002
19.
19. K. Gomberoff et al., Phys. Plasmas 14, 102111 (2007).
http://dx.doi.org/10.1063/1.2778420
20.
20. J. Fajans, N. Madsen, and F. Robicheaux, Phys. Plasmas 15, 032108 (2008).
http://dx.doi.org/10.1063/1.2899306
21.
21. E. Widmann et al., AIP Conf. Proc. 1441, 546 (2012).
http://dx.doi.org/10.1063/1.3700612
22.
22. A. Kellerbauer et al., Nucl. Instrum. Methods B 266, 351 (2008).
http://dx.doi.org/10.1016/j.nimb.2007.12.010
23.
23. D. Krasnicky et al., AIP Conf. Proc. 1521, 144 (2013).
http://dx.doi.org/10.1063/1.4796070
24.
24. P. Perez and Y. Sacquin, Class. Quantum Grav. 29, 184008 (2012).
http://dx.doi.org/10.1088/0264-9381/29/18/184008
25.
25. M. Amoretti et al., Nature 419, 456 (2002).
http://dx.doi.org/10.1038/nature01096
26.
26. C. A. Ordonez and D. L. Weathers, Phys. Plasmas 15, 083504 (2008).
http://dx.doi.org/10.1063/1.2975362
27.
27. C. A. Ordonez, D. D. Dolliver, Y. Chang, and J. R. Correa, Phys. Plasmas 9, 3289 (2002).
http://dx.doi.org/10.1063/1.1494822
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4890305
Loading
/content/aip/journal/adva/4/7/10.1063/1.4890305
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4890305
2014-07-14
2016-12-03

Abstract

The particle confinement properties of plasma confinement systems that employ dual levitated magnetic coils are investigated using classical trajectory Monte Carlo simulations. Two model systems are examined. In one, two identical current-carrying loops are coaxial and separated axially. In the second, two concentric and coplanar loops have different radii and carry equal currents. In both systems, a magnetic null circle is present between the current loops. Simulations are carried out for seven current loop separations for each system and at numerous values of magnetic field strength. Particle confinement is investigated at three locations between the loops at different distances from the magnetic null circle. Each simulated particle that did not escape the system exhibited one of four modes of confinement. Reduced results are given for both systems as the lowest magnetic field strength that exhibits complete confinement of all simulated particles for a particular loop separation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4890305.html;jsessionid=fXBt4AUBf6CIKv4cCA6GsLyW.x-aip-live-03?itemId=/content/aip/journal/adva/4/7/10.1063/1.4890305&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4890305&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4890305'
Right1,Right2,Right3,