Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4890866
1.
1. B. Huke and M. Lücke, Rep. Prog. Phys. 67, 1731 (2004).
http://dx.doi.org/10.1088/0034-4885/67/10/R01
2.
2. A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, Nature 504, 257 (2013).
http://dx.doi.org/10.1038/nature12863
3.
3. J. Faraudo, J. S. Andreu, and J. Camacho, Soft Matter. 9, 6654 (2013).
http://dx.doi.org/10.1039/c3sm00132f
4.
4. M. H. Sousa, F. A. Tourinho, J. Depeyrot, G. J. da Silva, and M. F. L. Lara, J. Phys. Chem. B 105, 1168 (2001).
http://dx.doi.org/10.1021/jp0039161
5.
5. S. Odenbach, Colloids Surf. A. 217, 171 (2003).
http://dx.doi.org/10.1016/S0927-7757(02)00573-3
6.
6. R. W. Chantrell, J. Popplewell, and S. W. Charles, IEEE Trans. Magn. MAG-14, 975 (1978).
http://dx.doi.org/10.1109/TMAG.1978.1059918
7.
7. S. Taketomi and R. D. Shull, J. Appl. Phys. 91, 8546 (2002).
http://dx.doi.org/10.1063/1.1452205
8.
8. A. F. Pshenichnikov, J. Magn. Magn. Mater. 145, 319 (1995).
http://dx.doi.org/10.1016/0304-8853(94)01632-1
9.
9. S. Taketomi, R. D. Shull, J. Magn. Magn. Mater. 266, 207 (2003).
http://dx.doi.org/10.1016/S0304-8853(03)00478-5
10.
10. J. García-Otero, M. Porto, J. Rivas, and A. Bunde, Phys. Rev. Lett. 84, 167 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.167
11.
11. J. Li, Y. Huang, X. Liu, Y. Lin, L. Bai, and Q. Li, Sci. Technol. Adv. Mater. 8, 448 (2007).
http://dx.doi.org/10.1016/j.stam.2007.04.007
12.
12. Y. Lin, J. Li, X. Liu, T. Zhang, B. Wen, Q. Zhang, and H. Miao, Chin. J. Chem. Phys. 23, 325 (2010).
http://dx.doi.org/10.1088/1674-0068/23/03/325-330
13.
13. E. Hasmonay, J. Depeyrot, M. H. Sousa, F. A. Tourinho, J.-C. Bacri, R. Perzynski, Yu. L. Raikher, and I. Rosenman, J. Appl. Phys. 88, 6628 (2000).
http://dx.doi.org/10.1063/1.1288016
14.
14. R. H. Kodama, A. E. Berkowitz, E. J. McNiff, and S. Foner, Phys. Rev. Lett. 77, 394 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.394
15.
15. M. Blanco-Mantecon, and K. OGrady, J. Magn. Magn. Mater. 296, 124 (2006).
http://dx.doi.org/10.1016/j.jmmm.2004.11.580
16.
16. S. Taketomi, R. V. Drew, R. D. Shull, and J. Magn, Magn. Mater. 307, 77 (2006).
http://dx.doi.org/10.1016/j.jmmm.2006.03.044
17.
17. M. Klokkenburg, R. P. A. Dullens, W. K. Kegel, B. H. Erné, and A. P. Philipse, Phys. Rev. Lett. 96, 037203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.037203
18.
18. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30(Suppl.), 120s (1959).
http://dx.doi.org/10.1063/1.2185850
19.
19. S. Taketomi, Jordan J. Phys. 4, 1 (2011).
20.
20. T. Turiv, I. Lazo, A. Brodin, B. I. Lev, V. Reiffenrath, V. G. Nazarenko, and O. D. Lavrentovich, Science, 342, 1351 (2013).
http://dx.doi.org/10.1126/science.1240591
21.
21. J. Li, X. Liu, Y. Lin, X. Qiu, X. Ma, and Y. Huang, J. Phys. D: Appl. Phys. 37, 3357 (2004).
http://dx.doi.org/10.1088/0022-3727/37/24/001
22.
22. D. Jamon, F. Donatini, A. Siblini, F. Royer, R. Perzynski, V. Cabuil, and S. Neveu, J. Magn. Magn. Mater. 321, 1148 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.10.038
23.
23. Q. Zhang, J. Li, Y. Lin, X. Liu, and H. Miao, J. Alloys and Compd. 508, 396 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.08.065
24.
24. L. Lin, J. Li, J. Fu, Y. Lin, and X. Liu, Mater. Chem. Phys. 134, 407 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2012.03.009
25.
25. C. G. Granqvistt and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976).
http://dx.doi.org/10.1063/1.322870
26.
26. K. Zahn, J. M. Méndez-Alcaraz, and G. Maret, Phys. Rev. Lett. 79, 175 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.175
27.
27. P. Jund, S. G. Kim, D. Tomanek, and J. Hetherington, Phys. Rev. Lett. 74, 3049 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3049
28.
28. F. Kun, W. Wen, K. F. Pál, and K. N. Tu, Phys. Rev. E 64, 061503 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.061503
29.
29. R. Gao, J. Li, S. Han, B. Wen, T. Zhang, H. Miao, and Q. Zhang, J. Exp. Nanosci. 7, 282 (2012).
http://dx.doi.org/10.1080/17458080.2010.524668
30.
30. S. Odenbach, J. Phys.: Condens. Matter 16, R1135 (2004).
http://dx.doi.org/10.1088/0953-8984/16/32/R02
31.
31. A. Yu, D. Zubarev and N. Chirikov, J. Exp. Theor. Phys. 110, 995 (2010).
http://dx.doi.org/10.1134/S1063776110060105
32.
32. J. Li, D. Dai, B. Zhao, Y. Lin, and C. Liu, J. Nanoparticle Res. 4, 261 (2002).
http://dx.doi.org/10.1023/A:1019920629506
33.
33. J. Li, D. Dai, X. Liu, Y. Lin, Y. Huang, and L. Bai, J. Mater. Res. 22, 886 (2007).
http://dx.doi.org/10.1557/jmr.2007.0134
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4890866
Loading
/content/aip/journal/adva/4/7/10.1063/1.4890866
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4890866
2014-07-18
2016-09-27

Abstract

Ferrofluids containing γ-FeO/NiO nanoparticles (not chemically treated) were synthesized using water and mixed water–glycerol as carrier liquid and the ferrofluid viscosity was modified by varying the glycerol content in the carrier liquid. The apparent magnetization of the ferrofluids decreased with increasing glycerol content. The loss in magnetization is described by the ratio of effective magnetic volume fraction to physical volume fraction of nanoparticles in the ferrofluids as a characteristic parameter. We ascribe the loss to the formation of “dead aggregates” having a ring-like structure of closed magnetic flux rather than to any chemical reaction. Such dead aggregates exist in zero magnetic field and do not contribute to the magnetization in the low or high field regime, so that the effective magnetic volume fraction in the ferrofluids decrease. An increase in carrier liquid viscosity is similar to a weakening of the thermal effect, so the number of dead aggregates increases and the magnetization decreases in inverse proportion to the viscosity. This relationship between the apparent magnetization and ferrofluid carrier liquid viscosity can be termed the “viscomagnetic effect”.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4890866.html;jsessionid=3ScuVDzKMijDTSF5CEP8ky9s.x-aip-live-06?itemId=/content/aip/journal/adva/4/7/10.1063/1.4890866&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4890866&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4890866'
Right1,Right2,Right3,