1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Failure mechanism analysis and process improvement on time-dependent dielectric breakdown of Cu/ultra-low-k dielectric based on complementary Raman and FTIR spectroscopy study
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/7/10.1063/1.4890960
1.
1. G. S. Haase, E. T. Ogawa, and J. W. McPherson, J. Appl. Phys. 98, 034503 (2005).
http://dx.doi.org/10.1063/1.1999028
2.
2. K. Y. Yiang, W. J. Yoo, Q. Guo, and A. Krishnamoorthy, Appl. Phys. Lett. 83, 524 (2003).
http://dx.doi.org/10.1063/1.1592618
3.
3. J. M. Atkin, E. Cartier, T. M. Shaw, R. B. Laibowitz, and T. F. Heinz, Appl. Phys. Lett. 93, 122902 (2008).
http://dx.doi.org/10.1063/1.2990648
4.
4. L. S. Chen, W. H. Bang, Y. J. Park, E. T. Ryan, S. King, and C. U. Kim, Appl. Phys. Lett. 96, 091903 (2010).
http://dx.doi.org/10.1063/1.3337102
5.
5. J. Noguchi, IEEE Trans. Electron Devices 52, 1743 (2005).
http://dx.doi.org/10.1109/TED.2005.851849
6.
6. F. Chen, O. Bravo, D. Harmon, M. Shinosky, and J. Aitken, Microelectron. Reliab. 48, 1375 (2008).
http://dx.doi.org/10.1016/j.microrel.2008.06.037
7.
7. J. W. McPherson, Microelectronics Reliability 52, 1753 (2012).
http://dx.doi.org/10.1016/j.microrel.2012.06.007
8.
8. T. K. S. Wong, Materials 5, 1602 (2012)
http://dx.doi.org/10.3390/ma5091602
9.
9. F. Chen and M. Shinosky, IEEE Trans. Electron Devices 56, 2 (2009).
http://dx.doi.org/10.1109/TED.2008.2008680
10.
10. C. Cartereta and A. Labrosseb, J. Raman Spectrosc. 41, 996 (2010).
http://dx.doi.org/10.1002/jrs.2537
11.
11. N. J. Trujillo, Q. Wu, and K. K. Gleason, Adv. Funct. Mater. 20, 607 (2010).
http://dx.doi.org/10.1002/adfm.200900999
12.
12. A. Grill and D. A. Neumayer, J. Appl. Phys. 94, 6697 (2003).
http://dx.doi.org/10.1063/1.1618358
13.
13. J. Bao, H. Shi, J. Liu, H. Huang, P. S. Ho, M. D. Goodner, M. Moinpour, and G. M. Kloster, J. Vac. Sci. Technol. B 26, 219 (2008).
http://dx.doi.org/10.1116/1.2834562
14.
14. H. L. Shi, J. Bao, R. S. Smith, H. Huang, J. Liu, P. S. Ho, M. L. Mcswiney, M. Moinpour, and G. M. Kloster, Appl. Phys. Lett. 93, 192909 (2008).
http://dx.doi.org/10.1063/1.3026528
15.
15. D. Dai, J. Bauters, and J. E. Bowers, Light: Sci. Appl. 1, e1 (2012).
http://dx.doi.org/10.1038/lsa.2012.1
16.
16. M. Hosseini, S. Rebić, B. M. Sparkes, J. Twamley, B. C. Buchler, and P. K. Lam, Light: Sci. Appl. 1, e40 (2012).
http://dx.doi.org/10.1038/lsa.2012.40
17.
17. M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, Light: Sci. Appl. 2, e112 (2013).
http://dx.doi.org/10.1038/lsa.2013.68
18.
18. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light: Sci. Appl. 1, e24 (2012).
http://dx.doi.org/10.1038/lsa.2012.24
19.
19. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, Light: Sci. Appl. 2, e118 (2013).
http://dx.doi.org/10.1038/lsa.2013.74
20.
20. X. F. Fan, W. T. Zheng, and D. J. Singh, Light: Sci. Appl. 3, e179 (2014).
http://dx.doi.org/10.1038/lsa.2014.60
21.
21. M. Vilmay, D. Roy, C. Monget, F. Volpi, and J.-M. Chai, IEEE Trans. Electron Devices and Material Reliability 9, 2 (2009).
http://dx.doi.org/10.1109/TDMR.2008.2002343
22.
22. J. C. K. Lam, M. Y. M. Huang, T. H. Ng, Mohammed Khalid Bin Dawood, and Fan Zhang, Appl. Phys. Lett. 102, 022908 (2013).
http://dx.doi.org/10.1063/1.4776735
23.
23. T. L. Tan, C. L. Gan, A. Y. Du, and C. K. Cheng, J. Appl. Phys. 106, 043517 (2009).
http://dx.doi.org/10.1063/1.3202387
24.
24. J. J. Noguchi and T. Saito, IEEE International Conference 39, 355 (2001).
25.
25. N. L. Michael, Choong-Un Kim, P. Gillespie, and R. Augur, Appl. Phys. Lett. 83, 1959 (2003).
http://dx.doi.org/10.1063/1.1609242
26.
26. N. Suzumura, S. Yamamoto, D. Kodama, K. Makabe, J. Komori, E. Murakami, S. Maegawa, and K. Kubota, IEEE International Conference 44, 484 (2006).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4890960
Loading
/content/aip/journal/adva/4/7/10.1063/1.4890960
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4890960
2014-07-21
2014-10-21

Abstract

Time-dependent dielectric breakdown (TDDB) is one of the most important reliability issues in Cu/low-k technology development. With continuous technology scalings to nanometer scales, TDDB issue is further exacerbated. In this paper, two failure mechanisms were investigated: the Ta ions migration model and the line-edge-roughness (LER) model, which is rendering the observed TDDB failure. Complimentary Raman and FTIR spectroscopy was applied to investigate the dielectric bonding characteristics. Our experimental results revealed the TDDB degradation behavior of Cu/ultra-low-k interconnects, suggesting the intrinsic degradation of the ultra-low-k dielectric. No out-diffusion of Cu ions was observed in Cu/Ta/TaN/SiCOH structures. Extensive TEM analysis further verified the migration of Ta ions from the Ta/TaN barrier bi-layer into the ultra-low-k dielectrics. Based on the LER model analysis, a comparative study in both passing and failing die elaborates that the sloped trench/via profile affected the TDDB performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4890960.html;jsessionid=8h848tebo4ar0.x-aip-live-06?itemId=/content/aip/journal/adva/4/7/10.1063/1.4890960&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Failure mechanism analysis and process improvement on time-dependent dielectric breakdown of Cu/ultra-low-k dielectric based on complementary Raman and FTIR spectroscopy study
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4890960
10.1063/1.4890960
SEARCH_EXPAND_ITEM