Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. S. Haase, E. T. Ogawa, and J. W. McPherson, J. Appl. Phys. 98, 034503 (2005).
2. K. Y. Yiang, W. J. Yoo, Q. Guo, and A. Krishnamoorthy, Appl. Phys. Lett. 83, 524 (2003).
3. J. M. Atkin, E. Cartier, T. M. Shaw, R. B. Laibowitz, and T. F. Heinz, Appl. Phys. Lett. 93, 122902 (2008).
4. L. S. Chen, W. H. Bang, Y. J. Park, E. T. Ryan, S. King, and C. U. Kim, Appl. Phys. Lett. 96, 091903 (2010).
5. J. Noguchi, IEEE Trans. Electron Devices 52, 1743 (2005).
6. F. Chen, O. Bravo, D. Harmon, M. Shinosky, and J. Aitken, Microelectron. Reliab. 48, 1375 (2008).
7. J. W. McPherson, Microelectronics Reliability 52, 1753 (2012).
8. T. K. S. Wong, Materials 5, 1602 (2012)
9. F. Chen and M. Shinosky, IEEE Trans. Electron Devices 56, 2 (2009).
10. C. Cartereta and A. Labrosseb, J. Raman Spectrosc. 41, 996 (2010).
11. N. J. Trujillo, Q. Wu, and K. K. Gleason, Adv. Funct. Mater. 20, 607 (2010).
12. A. Grill and D. A. Neumayer, J. Appl. Phys. 94, 6697 (2003).
13. J. Bao, H. Shi, J. Liu, H. Huang, P. S. Ho, M. D. Goodner, M. Moinpour, and G. M. Kloster, J. Vac. Sci. Technol. B 26, 219 (2008).
14. H. L. Shi, J. Bao, R. S. Smith, H. Huang, J. Liu, P. S. Ho, M. L. Mcswiney, M. Moinpour, and G. M. Kloster, Appl. Phys. Lett. 93, 192909 (2008).
15. D. Dai, J. Bauters, and J. E. Bowers, Light: Sci. Appl. 1, e1 (2012).
16. M. Hosseini, S. Rebić, B. M. Sparkes, J. Twamley, B. C. Buchler, and P. K. Lam, Light: Sci. Appl. 1, e40 (2012).
17. M. Sun, Z. Zhang, P. Wang, Q. Li, F. Ma, and H. Xu, Light: Sci. Appl. 2, e112 (2013).
18. J. J. Talghader, A. S. Gawarikar, and R. P. Shea, Light: Sci. Appl. 1, e24 (2012).
19. Sun, K. Ueno, H. Yu, A. Kubo, Y. Matsuo, and H. Misawa, Light: Sci. Appl. 2, e118 (2013).
20. X. F. Fan, W. T. Zheng, and D. J. Singh, Light: Sci. Appl. 3, e179 (2014).
21. M. Vilmay, D. Roy, C. Monget, F. Volpi, and J.-M. Chai, IEEE Trans. Electron Devices and Material Reliability 9, 2 (2009).
22. J. C. K. Lam, M. Y. M. Huang, T. H. Ng, Mohammed Khalid Bin Dawood, and Fan Zhang, Appl. Phys. Lett. 102, 022908 (2013).
23. T. L. Tan, C. L. Gan, A. Y. Du, and C. K. Cheng, J. Appl. Phys. 106, 043517 (2009).
24. J. J. Noguchi and T. Saito, IEEE International Conference 39, 355 (2001).
25. N. L. Michael, Choong-Un Kim, P. Gillespie, and R. Augur, Appl. Phys. Lett. 83, 1959 (2003).
26. N. Suzumura, S. Yamamoto, D. Kodama, K. Makabe, J. Komori, E. Murakami, S. Maegawa, and K. Kubota, IEEE International Conference 44, 484 (2006).

Data & Media loading...


Article metrics loading...



Time-dependent dielectric breakdown (TDDB) is one of the most important reliability issues in Cu/low-k technology development. With continuous technology scalings to nanometer scales, TDDB issue is further exacerbated. In this paper, two failure mechanisms were investigated: the Ta ions migration model and the line-edge-roughness (LER) model, which is rendering the observed TDDB failure. Complimentary Raman and FTIR spectroscopy was applied to investigate the dielectric bonding characteristics. Our experimental results revealed the TDDB degradation behavior of Cu/ultra-low-k interconnects, suggesting the intrinsic degradation of the ultra-low-k dielectric. No out-diffusion of Cu ions was observed in Cu/Ta/TaN/SiCOH structures. Extensive TEM analysis further verified the migration of Ta ions from the Ta/TaN barrier bi-layer into the ultra-low-k dielectrics. Based on the LER model analysis, a comparative study in both passing and failing die elaborates that the sloped trench/via profile affected the TDDB performance.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd