1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/7/10.1063/1.4891035
1.
1. R. Nadella, D. G. Eskin, Q. Du, and L. Katgerman, Prog. Mater Sci. 53(3), 421 (2008).
http://dx.doi.org/10.1016/j.pmatsci.2007.10.001
2.
2. L. H. Zhang, J. Yu, and X. M. Zhang, J. Cent. South. Univ. 17, 431 (2010).
http://dx.doi.org/10.1007/s11771-010-0502-8
3.
3. M. Sheng, C. Wang, Q. Zhong, Y. Wei, and Y. Wang, Ultrason Sonochem. 17, 21 (2010).
http://dx.doi.org/10.1016/j.ultsonch.2009.07.006
4.
4. J. W. Zhao, Sh. S. Wu, P. An, and Y. W. Mao, Diffusion and Defect Data. Part B. 141, 451 (2008).
5.
5. X. Jian, H. Xu, T. T. Meek et al., Mater. Lett. 59, 190 (2005).
http://dx.doi.org/10.1016/j.matlet.2004.09.027
6.
6. W. M. Mao, Y. J. Li, A. M. Zhao et al., Sci. Technol. Adv. Mater. 2, 297 (2001).
http://dx.doi.org/10.1016/S1468-6996(01)00032-8
7.
7. O. V. Abramov, Ultrasonic. 25(2), 73 (1987).
http://dx.doi.org/10.1016/0041-624X(87)90063-1
8.
8. G. I. Eskin, Ultrasonic Treatment of Light Alloy Melts (Gordon & Breach, Amsterdam, 1998).
9.
9. J. Piling and A. Hellawell, Metall. Mater. Trans. 27, 229 (1996).
http://dx.doi.org/10.1007/BF02647763
10.
10. V. Abramov, O. Abramov, V. Bulgakov, and F. Sommer, Mater. Lett. 37, 27 (1998).
http://dx.doi.org/10.1016/S0167-577X(98)00064-0
11.
11. V. F. Humphrey, Prog. Biophys Mol. Bio. 93(1), 195 (2007).
http://dx.doi.org/10.1016/j.pbiomolbio.2006.07.024
12.
12. G. Zhong, S. Wu, H. Jiang et al., J. Alloys Compd. 492(1), 482 (2010).
http://dx.doi.org/10.1016/j.jallcom.2009.11.145
13.
13. T. V. Atamanenko, D. G. Eskin, M. Sluiter et al., J. Alloys Compd. 509(1), 57 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.09.046
14.
14. O. V. Abramov, Ultrasound in Liquid and Solid Metals (CRC Press, Boca Raton, FL, 1994).
15.
15. Sh. Zh. Li, Resonance (Science Press, Beijing, 1987).
16.
16. X. W. Dong, Z. J. Hu, and J. H. Zhan, Foundry. 49, 816 (2000).
17.
17. H. B. Tao, H. Zhang, and M. Wang, China Metallurgy. 17, 45 (2007).
18.
18. Z. X. Huang and Q. Sh. Zheng, Chinese Journal of Theoretical and Applied Mechanics. 30, 247 (1998).
19.
19. N. Nishiguchi and T. Sakuma, Solid State Comum. 38(11), 1073 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90020-X
20.
20. Sh. M. Hao, Thermodynamic of Microstructure (Chemical Industry Press, Beijing, 2006).
21.
21. W. C. Ma, Numerical Simulation of Semi-continuous Casting Process for 7050 Aluminum Alloy Ingot and Analysis of Crack Tendency (Master's degree dissertation Central South University 2008).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4891035
Loading
/content/aip/journal/adva/4/7/10.1063/1.4891035
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4891035
2014-07-21
2014-10-31

Abstract

The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC) casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4891035.html;jsessionid=9tnhfef2eobgp.x-aip-live-06?itemId=/content/aip/journal/adva/4/7/10.1063/1.4891035&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4891035
10.1063/1.4891035
SEARCH_EXPAND_ITEM