Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Ulman, An Introduction to ultrathin Organic Films-From Langmuir Blodgett to Self Assembly (Academic Press, Boston, 1991).
2. X. Chen, S. Lenthert, M. Hirtz, N. Lu, H. Fuchs, and L. Chi, Acc. Chem. Res. 40, 393 (2007).
3. G. A. Chamberlain, Sol. Cells 8, 47 (1983).
4. H. M. Zeyada and M. M. El-Nahass, Appl. Surf. Sci. 254, 1852 (2008).
5. A. A. Zanfolim, D. Volpati, C. A. Olivati, A. E. Job, and C. J. I. Constantino, J. Phys. Chem. C. 114, 12290 (2010).
6. H. Wang, Z. Liu, M. F. Lo, T. W. Ng, C. S. Lee, D. Yan, and S. T. Lee, J. Appl. Phys. 107, 024510 (2010).
7. Y. Chen, J. Chen, D. Ma, D. Yan, L. Wang, and F. Zhu, Appl. Phys. Lett. 98, 243309 (2011).
8. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
9. Y. Zhou, T. Taima, T. Miyadera, T. Yamanari, and Y. Yoshida, J. Appl. Phys. 111, 103117 (2012).
10. S. Choi, S. H. Hong, S. H. Cho, S. Park, S. M. Park, O. Kim, and M. Ree, Adv. Mater. 20, 1766 (2008).
11. P. Peumans, and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
12. J. G. V. Dijken, M. D. Fleischauer, and M. J. Brett, Org. Electron. 12, 2111 (2011).
13. Y. Acikbas, M. Evyapana, T. Ceyhanb, R. Capan, and O. Bekaroglu, Sens. Actuators B 123, 1017 (2007).
14. N. Karl, in Organic Electronic Materials, edited by R. Farchioni and G. Grosso (Springer, Berlin, 2001), Vol. II.
15. J. Kim, N. Lim, C. R. Park, and S. Yim, Surf. Sci. 604, 1143 (2010).
16. B. B. Mandelbrodt, The Fractal Geometry of Nature (Freeman, New York, 1982).
17. A. C. Durr, F. Schreiber, K. A. Ritely, V. Kruppa, J. Kurg, H. Dosch, and B. Sruth, Phys. Rev. Lett. 90, 016104 (2003).
18. George Palasantzas, Phys. Rev. B. 48, 14472 (1993).
19. S. Sarkar, S. Patra, N. Gayathri, and S. Banerjee, Appl. Phys. Lett. 96, 063112 (2010).
20. D. R. Tackely, G. Dent, and W. E. Smith, Phys. Chem. Chem. Phys. 2, 3949 (2000).
21. K. Xiao, Y. Liu, X. Huang, Y. Xu, G. Yu, and D. Zhu, J. Phys. Chem. B. 107 (2003).
22. A. Leuthe and H. Riegler, J. Phys. D. 25, 1766 (1992).
23. A. Malik, M. K. Durbin, A. G. Richter, K. G. Huang, and P. Dutta, Phys. Rev. B. 52, 1654 (1995).
24. J. E. Riegler and J. D. L. Grange, Phys. Rev. Lett. 61, 2492 (1988).
25. D. E. Hooks, T. Fritz, and M. D. Ward, Adv. Mater. 13, 227 (2001).<227::AID-ADMA227>3.0.CO;2-P
26. G. Witte and C. Woll, J. Mater. Res. 19, 889 (2004).
27. D. Roy, N. M. Das, and P. S. Gupta, Appl. Surf. Sci. 271, 394 (2013).
28. N. M. Das, D. Roy, and P. S. Gupta, Physica B. 407, 4777 (2012).
29. Y. Zhou, T. Taima, T. Miyadera, T. Yamanari, and Yuji Yoshida, J. Appl. Phys. 111, 103117 (2012).
30. T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, Org. Electron. 8, 702 (2007).
31. C. Schunemann, C. Elschner, A. A. Levin, M. Levichkova, K. Leo, and M. Reide, Thin Solid Films 519, 3939 (2011).
32. C. V. Thompson, J. Appl. Phys. 58, 763 (1985).
33. E. M. Zielinski, R. P. Vinci, and J. C. Bravman, J. Appl. Phys. 76, 4516 (1994).
34. C. V. Thompson, J. Floro, and H. I. Smith, J. Appl. Phys. 67, 4099 (1990).
35. S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, J. Phys. Chem. B. 104, 7124 (2000).
36. Yi. Zhang, E. Barrena, X. Zhang, A. Turak, F. Maye, and H. Dosch, J. Phys. Chem. C 114, 13752 (2010).
37. F. Biscarini, P. Samori, O. Greco, and R. Zamboni, Phys. Rev. Lett. 78, 2389 (1997).
38. D. Raoufi, Physica B 405, 451 (2010).

Data & Media loading...


Article metrics loading...



The ZnPc molecules in the thin film prepared by Langmuir-Blodgett (LB) process in asdeposited state has been found to have an edge on orientation with average tilt angle of 64.3 ° as confirmed from the Pressure-Area (π-A) isotherm and X-ray diffraction (XRD) study. The ZnPc LB thin film has been observed to have abnormal growth mode at higher annealing temperature and it is mainly driven by minimization of surface free energy which lead to large increase in crystallinity of the film. Kinetically favored orientational and structural transitions of ZnPc thin film during annealing and their effect on the surface morphology of the thin film has been studied using scaling concepts. The scaling exponents 1) root mean square (RMS) roughness σ, 2) roughness exponent α and, 3) in plane correlation length ξ are calculated from the HDCF g(r) and ACF C(r). The RMS surface roughness σ is found to be dependent on the as defined short wavelength undulations (ρ) and long wavelength undulations (χ). Both ρ and χ are the function of all the three scaling exponents. σ has been observed to be maximum for the ZnPc thin film annealed at 290 °C, since the χ shoot to maximum value at this temperature due to the formation of small domains of ZnPc nanorods. The self affinity of the ZnPc thin film is found to decrease on annealing as obtained from both power spectral density (PSD) and HDCF g(R) & ACF C(R) study, which confirms that the dimension of surface morphology of the ZnPc LB thin film transform towards 2D with increase in annealing temperature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd