Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4891177
1.
1. A. Ulman, An Introduction to ultrathin Organic Films-From Langmuir Blodgett to Self Assembly (Academic Press, Boston, 1991).
2.
2. X. Chen, S. Lenthert, M. Hirtz, N. Lu, H. Fuchs, and L. Chi, Acc. Chem. Res. 40, 393 (2007).
http://dx.doi.org/10.1021/ar600019r
3.
3. G. A. Chamberlain, Sol. Cells 8, 47 (1983).
http://dx.doi.org/10.1016/0379-6787(83)90039-X
4.
4. H. M. Zeyada and M. M. El-Nahass, Appl. Surf. Sci. 254, 1852 (2008).
http://dx.doi.org/10.1016/j.apsusc.2007.07.175
5.
5. A. A. Zanfolim, D. Volpati, C. A. Olivati, A. E. Job, and C. J. I. Constantino, J. Phys. Chem. C. 114, 12290 (2010).
http://dx.doi.org/10.1021/jp1008913
6.
6. H. Wang, Z. Liu, M. F. Lo, T. W. Ng, C. S. Lee, D. Yan, and S. T. Lee, J. Appl. Phys. 107, 024510 (2010).
http://dx.doi.org/10.1063/1.3291135
7.
7. Y. Chen, J. Chen, D. Ma, D. Yan, L. Wang, and F. Zhu, Appl. Phys. Lett. 98, 243309 (2011).
http://dx.doi.org/10.1063/1.3599557
8.
8. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
http://dx.doi.org/10.1063/1.117151
9.
9. Y. Zhou, T. Taima, T. Miyadera, T. Yamanari, and Y. Yoshida, J. Appl. Phys. 111, 103117 (2012).
http://dx.doi.org/10.1063/1.4721409
10.
10. S. Choi, S. H. Hong, S. H. Cho, S. Park, S. M. Park, O. Kim, and M. Ree, Adv. Mater. 20, 1766 (2008).
http://dx.doi.org/10.1002/adma.200702147
11.
11. P. Peumans, and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
http://dx.doi.org/10.1063/1.1384001
12.
12. J. G. V. Dijken, M. D. Fleischauer, and M. J. Brett, Org. Electron. 12, 2111 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.09.005
13.
13. Y. Acikbas, M. Evyapana, T. Ceyhanb, R. Capan, and O. Bekaroglu, Sens. Actuators B 123, 1017 (2007).
http://dx.doi.org/10.1016/j.snb.2006.11.004
14.
14. N. Karl, in Organic Electronic Materials, edited by R. Farchioni and G. Grosso (Springer, Berlin, 2001), Vol. II.
15.
15. J. Kim, N. Lim, C. R. Park, and S. Yim, Surf. Sci. 604, 1143 (2010).
http://dx.doi.org/10.1016/j.susc.2010.03.029
16.
16. B. B. Mandelbrodt, The Fractal Geometry of Nature (Freeman, New York, 1982).
17.
17. A. C. Durr, F. Schreiber, K. A. Ritely, V. Kruppa, J. Kurg, H. Dosch, and B. Sruth, Phys. Rev. Lett. 90, 016104 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.016104
18.
18. George Palasantzas, Phys. Rev. B. 48, 14472 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.14472
19.
19. S. Sarkar, S. Patra, N. Gayathri, and S. Banerjee, Appl. Phys. Lett. 96, 063112 (2010).
http://dx.doi.org/10.1063/1.3309690
20.
20. D. R. Tackely, G. Dent, and W. E. Smith, Phys. Chem. Chem. Phys. 2, 3949 (2000).
http://dx.doi.org/10.1039/b005091l
21.
21. K. Xiao, Y. Liu, X. Huang, Y. Xu, G. Yu, and D. Zhu, J. Phys. Chem. B. 107 (2003).
22.
22. A. Leuthe and H. Riegler, J. Phys. D. 25, 1766 (1992).
http://dx.doi.org/10.1088/0022-3727/25/12/015
23.
23. A. Malik, M. K. Durbin, A. G. Richter, K. G. Huang, and P. Dutta, Phys. Rev. B. 52, 1654 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.13006
24.
24. J. E. Riegler and J. D. L. Grange, Phys. Rev. Lett. 61, 2492 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.2492
25.
25. D. E. Hooks, T. Fritz, and M. D. Ward, Adv. Mater. 13, 227 (2001).
http://dx.doi.org/10.1002/1521-4095(200102)13:4<227::AID-ADMA227>3.0.CO;2-P
26.
26. G. Witte and C. Woll, J. Mater. Res. 19, 889 (2004).
http://dx.doi.org/10.1557/JMR.2004.0251
27.
27. D. Roy, N. M. Das, and P. S. Gupta, Appl. Surf. Sci. 271, 394 (2013).
http://dx.doi.org/10.1016/j.apsusc.2013.01.212
28.
28. N. M. Das, D. Roy, and P. S. Gupta, Physica B. 407, 4777 (2012).
http://dx.doi.org/10.1016/j.physb.2012.08.035
29.
29. Y. Zhou, T. Taima, T. Miyadera, T. Yamanari, and Yuji Yoshida, J. Appl. Phys. 111, 103117 (2012).
http://dx.doi.org/10.1063/1.4721409
30.
30. T. Sakurai, R. Fukasawa, K. Saito, and K. Akimoto, Org. Electron. 8, 702 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.06.004
31.
31. C. Schunemann, C. Elschner, A. A. Levin, M. Levichkova, K. Leo, and M. Reide, Thin Solid Films 519, 3939 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.356
32.
32. C. V. Thompson, J. Appl. Phys. 58, 763 (1985).
http://dx.doi.org/10.1063/1.336194
33.
33. E. M. Zielinski, R. P. Vinci, and J. C. Bravman, J. Appl. Phys. 76, 4516 (1994).
http://dx.doi.org/10.1063/1.357283
34.
34. C. V. Thompson, J. Floro, and H. I. Smith, J. Appl. Phys. 67, 4099 (1990).
http://dx.doi.org/10.1063/1.344969
35.
35. S. Heutz, S. M. Bayliss, R. L. Middleton, G. Rumbles, and T. S. Jones, J. Phys. Chem. B. 104, 7124 (2000).
http://dx.doi.org/10.1021/jp0000836
36.
36. Yi. Zhang, E. Barrena, X. Zhang, A. Turak, F. Maye, and H. Dosch, J. Phys. Chem. C 114, 13752 (2010).
http://dx.doi.org/10.1021/jp103841t
37.
37. F. Biscarini, P. Samori, O. Greco, and R. Zamboni, Phys. Rev. Lett. 78, 2389 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2389
38.
38. D. Raoufi, Physica B 405, 451 (2010).
http://dx.doi.org/10.1016/j.physb.2009.09.005
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4891177
Loading
/content/aip/journal/adva/4/7/10.1063/1.4891177
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4891177
2014-07-22
2016-07-26

Abstract

The ZnPc molecules in the thin film prepared by Langmuir-Blodgett (LB) process in asdeposited state has been found to have an edge on orientation with average tilt angle of 64.3 ° as confirmed from the Pressure-Area (π-A) isotherm and X-ray diffraction (XRD) study. The ZnPc LB thin film has been observed to have abnormal growth mode at higher annealing temperature and it is mainly driven by minimization of surface free energy which lead to large increase in crystallinity of the film. Kinetically favored orientational and structural transitions of ZnPc thin film during annealing and their effect on the surface morphology of the thin film has been studied using scaling concepts. The scaling exponents 1) root mean square (RMS) roughness σ, 2) roughness exponent α and, 3) in plane correlation length ξ are calculated from the HDCF g(r) and ACF C(r). The RMS surface roughness σ is found to be dependent on the as defined short wavelength undulations (ρ) and long wavelength undulations (χ). Both ρ and χ are the function of all the three scaling exponents. σ has been observed to be maximum for the ZnPc thin film annealed at 290 °C, since the χ shoot to maximum value at this temperature due to the formation of small domains of ZnPc nanorods. The self affinity of the ZnPc thin film is found to decrease on annealing as obtained from both power spectral density (PSD) and HDCF g(R) & ACF C(R) study, which confirms that the dimension of surface morphology of the ZnPc LB thin film transform towards 2D with increase in annealing temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4891177.html;jsessionid=6aphb-VLO1V8gKEk5A65j7E6.x-aip-live-03?itemId=/content/aip/journal/adva/4/7/10.1063/1.4891177&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4891177&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4891177'
Right1,Right2,Right3,