1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Light-controlled resistive switching of ZnWO4 nanowires array
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/7/10.1063/1.4891461
1.
1. Y. B. Lin, Z. B. Yan, X. B. Lu, Z. X. Lu, M. Zeng, Y. Chen, X. S. Gao, J. G. Wan, J. Y. Dai, and J. M. Liu, “Temperature-dependent and polarization-tuned resistive switching in Au/BiFeO3/SrRuO3 junctions,” Appl. Phys. Lett. 104, 143503 (2014).
http://dx.doi.org/10.1063/1.4870813
2.
2. X. H. Wu, Z. M. Xu, F. Zhao, X. H. Xu, B. B. Liu, T. Y. Sun, S. S. Liu, W. N. Zhao, and Z. C. Ma, “Transparent bipolar resistive switching memory devices based on Mn doped SnO2 films,” Journal of Alloys and Compounds 602, 175179 (2014).
http://dx.doi.org/10.1016/j.jallcom.2014.02.145
3.
3. R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges,” Adv. Mater. 21, 2632 (2009).
http://dx.doi.org/10.1002/adma.200900375
4.
4. D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru, and C. S. Hwang, “Emerging memories: resistive switching mechanisms and current status,” Rep. Prog. Phys. 75, 076502 (2012).
http://dx.doi.org/10.1088/0034-4885/75/7/076502
5.
5. J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,” Nature Nanotechnology 8, 13 (2013).
http://dx.doi.org/10.1038/nnano.2012.240
6.
6. G. Y. Xia, Z. Y. Ma, X. F. Jiang, H. F. Yang, J. Xu, L. Xu, W. Li, K. J. Chen, and D. Feng, “Direct observation of resistive switching memories behavior from nc-Si embedded in SiO2 at room temperature,” Journal of Non-Crystalline Solids 358, 23482352 (2012).
http://dx.doi.org/10.1016/j.jnoncrysol.2012.01.065
7.
7. D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nature Nanotechnology 5, 148153 (2010).
http://dx.doi.org/10.1038/nnano.2009.456
8.
8. G. Chen, C. Song, C. Chen, S. Gao, F. Zeng, and F. Pan, “Resistive Switching and Magnetic Modulation in Cobalt‐Doped ZnO,” Adv. Mater. 2, 35153520 (2012).
http://dx.doi.org/10.1002/adma.201201595
9.
9. J. Park, S. Lee, and K. Yong, “Photo-stimulated resistive switching of ZnO nanorods,” Nanotechnology 23, 385707 (2012).
http://dx.doi.org/10.1088/0957-4484/23/38/385707
10.
10. D. Ielmini, F. Nardi, and C. CagliPhysical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories,” Nanotechnology 22, 254022 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254022
11.
11. A. Chen, S. Haddad, and Y. C. Wu, “A temperature-accelerated method to evaluate data retention of resistive switching nonvolatile memory,” IEEE Electron Device Lett. 29, 38 (2008).
http://dx.doi.org/10.1109/LED.2007.910753
12.
12. D. Jimenez, E. Miranda, A. Tsurumaki-Fukuchi, H. Yamada, J. Sune, and A. Sawa, “Multilevel recording in Bi-deficient Pt/BFO/SRO heterostructures based on ferroelectric resistive switching targeting high-density information storage in nonvolatile memories,” Appl. Phys. Lett. 103, 263502 (2013).
http://dx.doi.org/10.1063/1.4855155
13.
13. R. K. Pan, T. J. Zhang, J. Y. Wang, J. Z. Wang, D. F. Wang, and M. G. Duan, “Mechanisms of current conduction in Pt/BaTiO3/ /Pt resistive switching cell,” Thin Solid Films 520, 40164020 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.01.013
14.
14. F. Zhang, Y. B. Lin, H. Wu, Q. Miao, J. J. Gong, J. P. Chen, S. J. Wu, M. Zeng, X. S. Gao, and J. M. Liu, “Asymmetric reversible diode-like resistive switching behaviors in ferroelectric BaTiO3 thin films,” Chin. Phys. B 2, 027702 (2014).
http://dx.doi.org/10.1088/1674-1056/23/2/027702
15.
15. R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, “Coexistence of Filamentary and Homogeneous Resistive Switching in Fe‐Doped SrTiO3 Thin‐Film Memristive Devices,” Adv. Mater. 22, 48194822 (2010).
http://dx.doi.org/10.1002/adma.201001872
16.
16. H. Q. Ling, A. D. Li, D. Wu, Y. F. Tang, Z. G. Liu, and N. B. Ming, “Fabrication and characterization of SrZrO3 thin films prepared by sol–gel,” Materials Chemistry and Physics 75, 170173 (2002).
http://dx.doi.org/10.1016/S0254-0584(02)00049-4
17.
17. S. Matsuo, H. Yugami, M. Ishigame, and S. Shin, “Hole burning in proton conducting oxides SrZrO3:Pr3+,” Journal of Luminescence 64, 267272 (1995).
http://dx.doi.org/10.1016/0022-2313(95)00041-N
18.
18. K. M. Kim, D. S. Jeong, and C. S. Hwang, “Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook,” Nanotechnology 22, 254002 (2011).
http://dx.doi.org/10.1088/0957-4484/22/25/254002
19.
19. X. G. Chen, X. B. Ma, Y. B. Yang, L. P. Chen, G. C. Xiong, G. J. Lian, Y. C. Yang, and J. B. Yang, “Comprehensive study of the resistance switching in SrTiO3 and Nb-doped SrTiO3,” Appl. Phys. Lett. 98, 122102 (2011).
http://dx.doi.org/10.1063/1.3569586
20.
20. M. Ungureanu, R. Zazpe, F. Golmar, P. Stoliar, R. Llopis, F. Casanova, and L. E. Hueso, “A Light‐Controlled Resistive Switching Memory,” Adv. Mater. 24, 24962500 (2012).
http://dx.doi.org/10.1002/adma.201200382
21.
21. D. M. Trots, A. Senyshyn, L. Vasylechko, R. Niewa, T. Vad, V. B. Mikhailik, and H. Kraus, “Crystal structure of ZnWO4 scintillator material in the range of 3–1423 K,” J. Phys.: Condens. Matter 21, 325402 (2009).
http://dx.doi.org/10.1088/0953-8984/21/32/325402
22.
22. D. W. Kim, I. S. Cho, S. S. Shin, S. Lee, T. H. Noh, D. H. Kim, H. J. Suk, and K. S. Hong, “Electronic band structures and photovoltaic properties of MWO4 (M=Zn, Mg,Ca,Sr)compounds,” Journal of Solid State Chemistry 184, 21032107 (2011).
http://dx.doi.org/10.1016/j.jssc.2011.06.005
23.
23. Y. J. Wang, Z. X. Wang, S. Muhammad, and J. HeGraphite-like C3N4 hybridized ZnWO4 nanorods: Synthesis and its enhanced photocatalysis in visible light,” CrystEngComm 14, 50655070 (2012).
http://dx.doi.org/10.1039/c2ce25517k
24.
24. X. Zhao, W. Q. Yao, Y. Wu, S. C. Zhang, H. P. Yang, and Y. F. Zhu, “Fabrication and photoelectrochemical properties of porous ZnWO4 film.,” Journal of Solid State Chemistry 179, 25622570 (2006).
http://dx.doi.org/10.1016/j.jssc.2006.05.004
25.
25. H. W. Shim, I. S. Cho, K. S. Hong, A. H. Lim, and D. W. Kim, “Wolframite-type ZnWO4 nanorods as new anodes for Li-ion batteries,” J. Phys. Chem. C 115, 1622816233 (2011).
http://dx.doi.org/10.1021/jp204656v
26.
26. X. G. Chen, J. B. Fu, S. Q. Liu, Y. B. Yang, C. S. Wang, H. L. Du, G. C. Xiong, G. J. Lian, and J. B. Yang, “Trap-assisted tunneling resistance switching effect in CeO2/La0.7(Sr0.1Ca0.9)0.3MnO3 heterostructure,” Appl. Phys. Lett. 101, 153509 (2012).
http://dx.doi.org/10.1063/1.4760221
27.
27. C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, C. J. Mogab, and J. C. Lee, “A model for electrical conduction in metal‐ferroelectric‐metal thin‐film capacitors,” Journal of Applied Physics., 75, 10141022 (1994).
http://dx.doi.org/10.1063/1.356508
28.
28. A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, “Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca 0.3MnO 3 interface,” Appl. Phys. Lett. 83, 957 (2003).
http://dx.doi.org/10.1063/1.1590741
29.
29. A. Sawa, T. Fujii, M. Kawasaki, and Y. ToKura, “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0. 3MnO3 interface,” Appl. Phys. Lett. 85, 4073 (2004).
http://dx.doi.org/10.1063/1.1812580
30.
30. H. Sim, D. J. Seong, M. Chang, and H. Hwang, “Excellent Resistance Switching Characteristics of Pt/Single-crystal Nb-Doped SrTiO3 Schottky Junction,” IEEE Non-Volatile Semiconductor Memory Workshop, 8889 (2006).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4891461
Loading
/content/aip/journal/adva/4/7/10.1063/1.4891461
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4891461
2014-07-24
2014-11-26

Abstract

ZnWO nanowires array was prepared on the titanium substrate by a facile hydrothermal synthesis, in which the average length of ZnWO nanowires is about 2um and the diameter of individual ZnWO nanowire ranges from 50 to 70 nm. The bipolar resistive switching effect of ZnWO nanowires array was observed. Moreover, the performance of the resistive switching device is greatly improved under white light irradiation compared with that in the dark.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4891461.html;jsessionid=1l01jrpgsunvo.x-aip-live-02?itemId=/content/aip/journal/adva/4/7/10.1063/1.4891461&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Light-controlled resistive switching of ZnWO4 nanowires array
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4891461
10.1063/1.4891461
SEARCH_EXPAND_ITEM