Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4891648
1.
1. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas, 1, 1626 (1994).
http://dx.doi.org/10.1063/1.870664
2.
2. M. Tabak, D. Hinkel, S. Atzeni, E. M. Campbell, and K. Tanaka, Fusion Science and Technology, 49, 254 (2006).
3.
3. S. Atzeni, J. R. Davies, L. Hallo, J. J. Honrubia, P. H. Maire, M. Olazabal-Loum´e, J. L. Feugeas, X. Ribeyre, A. Schiavi, G. Schurtz, J. Breil, and Ph. Nicola, Nucl. Fusion, 49, 055008 (2009).
http://dx.doi.org/10.1088/0029-5515/49/5/055008
4.
4. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.155001
5.
5. P. A. Norreys, R. Allott, R. J. Clarke, J. Collier, D. Neely, S. J. Rose, M. Zepf, M. Santala, A. R. Bell, K. Krushelnick, A. E. Dangor, N. C. Woolsey, R. G. Evans, H. Habara, and T. Norimatsu, Phys. Plasmas, 7, 3721 (2000).
http://dx.doi.org/10.1063/1.1287419
6.
6. R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Mlyanaga, T. Norimatsu, S. J. Rose, T. Shuzaki, K. Kondo, K. Shigemor, A. Sunahara, M. Tempo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, Nature, 412, 798 (2001).
http://dx.doi.org/10.1038/35090525
7.
7. R. Kodama, K. A. Tanaka, S. Fujioka, H. Fujita, H. Habara, Y. Izawa, T. Jitsuno, Y. Kitagawa, K. Krushelnick, K. Mima, N. Miyanaga, K. Nagai, P. A. Norreys, T. Norimatsu, K. Shigemori, H. Shiraga, Y. Toyama, M. Zepf, and T. Yamanaka, Plasma Phys. Controlled Fusion, 44, B109 (2002).
http://dx.doi.org/10.1088/0741-3335/44/12B/309
8.
8. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.155001
9.
9. J. W. Bates, A. J. Schmitt, D. E. Fyfe, S. P. Obenschain, and S. T. Zalesak, High Energy Density Physics, 6, 128 (2010).
http://dx.doi.org/10.1016/j.hedp.2009.12.002
10.
10. M. Lafon, X. Ribeyre, and G. Schurtz, Phys. Plasmas, 17, 052704 (2010).
http://dx.doi.org/10.1063/1.3407623
11.
11. B. Canaud and M. Temporal, New J. Phys. 12, 043037 (2010).
http://dx.doi.org/10.1088/1367-2630/12/4/043037
12.
12. A. J. Schmitt, J. W. Bates, S. P. Obenschain, S. T. Zalesak, and D. E. Fyfe, Phys. Plasmas, 17, 042701 (2010).
http://dx.doi.org/10.1063/1.3385443
13.
13. M. D. Rosen, J. D. Lindl, and A. R. Thiessen, Laser Program Annual Report, Rep. UCRL-50021-83, Lawrence Livermore National Laboratory, CA, Sec. 3, P. 5 (1983).
14.
14. A. H. Farahbod and S. A. Ghasemi, Iranian Journal of Physics Research, 12(4), 347 (2013).
15.
15. S. A. Ghasemi and A. H. Farahbod, Iranian Journal of Physics Research, 13(4) 397 (2013).
16.
16. S. A. Ghasemi and A. H. Farahhbod, AnnualPhysics Conference of Iran, 368, August 27–30,Yazd University Yazd (2012).
17.
17. S. A. Ghasemi and A. H. Farahbod, Bull. Am. Phys. Soc. 58, V1308 (2013).
18.
18. S. A. Ghasemi and A. H. Farahbod, Bull. Am. Phys. Soc. 59, J3312 (2014).
19.
19. S. A. Ghasemi and A. H. Farahbod, Bull. Am. Phys. Soc. 59, C1200 (2014).
20.
20. S. A. Slutz and R. A. Vesey, Phys. Plasmas, 12, 062702 (2005).
http://dx.doi.org/10.1063/1.1921672
21.
21. A. A. Solodov and R. Betti, Phys. Plasmas, 15, 042707 (2008).
http://dx.doi.org/10.1063/1.2903890
22.
22. S. Atzeni, A. Schiavi, and J. R. Davies, Plasma Phys. Control. Fusion, 51, 015016 (2009).
http://dx.doi.org/10.1088/0741-3335/51/1/015016
23.
23. A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev. Lett. 79, 2686 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2686
24.
24. A. L. Lei, A. Pukhov, R. Kodama, T. Yabuuchi, K. Adumi, K. Endo, R. R. Freeman, H. Habara, Y. Kitagawa, K. Kondo, G. R. Kumar, T. Matsuoka, K. Mima, H. Nagatomo, T. Norimatsu, O. Shorokhov, R. Snavely, X. Q. Yang, J. Zheng, and K. A. Tanaka, Phys. Review E, 76, 066403 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.066403
25.
25. G. Li, R. Yen, C. Ren, T. L. Wang, J. Tonge, and W. B. Mori, Phys. Rev. Lett. 100, 125002 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.125002
26.
26. G. Li, R. Yan, C. Ren, J. Tonge, and W. B. Mori, Phys. Plasmas, 18, 042703 (2011).
http://dx.doi.org/10.1063/1.3574899
27.
27. C. Ren, J. Tonge, G. Li, F. Fiuza, R. A. Fonseca, J. May, W. B. Mori, L. O. Silva, T. L. Wang, and R. Yan, Journal of Physics: Conference Series 125, 012046 (2008).
http://dx.doi.org/10.1088/1742-6596/125/1/012046
28.
28. C. Ren, G. Li, R. Yan, J. Tonge, and W. B. Mori, FSC Meeting, August 4, 2010, Lawrence Livermore National Laboratory, CA.
29.
29. A. Friou, E. Lafebvre, and L. Gremillet, Phys. Plasmas, 19, 022704 (2012).
http://dx.doi.org/10.1063/1.3680613
30.
30. S. Yu Guskov, “Plasma Physics Reports,” Pleiades Publishing Ltd. 39(1), 150 (2013).
31.
31. R. H. H. Scott, C. Beaucourt, H.-P. Schlenvoigt, K. Markey, K. L. Lancaster, C. P. Ridgers, C. M. Brenner, J. Pasley, R. J. Gray, I. O. Musgrave, A. P.L Robinson, K. Li, M. M. Notley, J. R. Davies, S. D. Baton, J. J. Santos, J.-L. Feugeas, Ph. Nicola, G. Malka, V. T. Tikhonchuk, P. McKenna, D. Neely, S. J. Rose, and P. A. Norreys, Phys. Rev. Lett. 109, 015001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.015001
32.
32. Hong-bo Cai, Shao-ping Zhu, and X. T. He, Phys. Plasmas, 20, 072701 (2013).
http://dx.doi.org/10.1063/1.4812631
33.
33. S. Chawla, M. S. Wei, R. Mishra, K. U. Akli, C. D. Chen, H. S. McLean, A. Morace, P. K. Patel, H. Sawada, Y. Sentoku, R. B. Stephens, and F. N. Beg, Phys. Rev. Lett. 110, 025001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.025001
34.
34. W. Yu, L. Cao, M. Y. Yu, H. Cai, H. Xu, X. Yang, A. Lei, K. A. Tanaka, and R. Kodama, Laser and Particle Beams, 27, 109 (2009).
http://dx.doi.org/10.1017/S0263034609000160
35.
35. V. Mironov, N. Zharova, E. d’Humieres, R. Capdessus, and V. T. Tikhonchuk, Plasma Phys. Control. Fusion, 54, 095008 (2012).
http://dx.doi.org/10.1088/0741-3335/54/9/095008
36.
36. N. Naumova, C. Labaune, T. Schlegel, V. T. Tikhonchuk, G. Mourou, and I. V. Sokolov, 35 th EPS Conference on Plasma Phys. Hersomissons, 9–13 June 2008 ECA, 32D, P-1.119 (2008).
37.
37. S. Atzeni and M. Tabak, Plasma Phys. Controlled Fusion, 47, B769 (2005).
http://dx.doi.org/10.1088/0741-3335/47/12B/S58
38.
38. S. Atzeni, A. Shiavi, and C. Bellei, Phys. Plasmas, 14, 052702 (2007).
http://dx.doi.org/10.1063/1.2716682
39.
39. J. J. Honrubia and J. Meyer-ter Vehn, Journal of Physics: Conference Series, 112, 022055 (2008).
http://dx.doi.org/10.1088/1742-6596/112/2/022055
40.
40. C. Bellei, L. Divol, A. J. Kemp, M. H. Key, D. J. Larson, D. J. Strozzi, M. M. Marinak, M. Tabak, and P. K. Patel, Phys. Plasmas, 20, 052704 (2013).
http://dx.doi.org/10.1063/1.4804277
41.
41. D. J. Strozzi, M. Tabak, D. J. Larson, L. Divol, A. J. Kemp, C. Bellei, M. M. Marinak, and M. H. Key, Phys. Plasmas, 19, 072711 (2012).
http://dx.doi.org/10.1063/1.4739294
42.
42. C. D. Zhou and R. Betti, Phys. Plasmas, 14, 072703 (2007).
http://dx.doi.org/10.1063/1.2746812
43.
43. S. Atzeni, A. Schiavi, and J. R. Davies, Plasma Phys. Control. Fusion, 51, 015016 (2009).
http://dx.doi.org/10.1088/0741-3335/51/1/015016
44.
44. S. Atzeni, A. Schiavi, and J. R. Davies, 35th EPS Conference on Plasma Phys. Hersonissos, 9-13 June 2008 ECA, 32D, P-5.106 (2008).
45.
45. F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, Phys. Plasmas, 4, 447 (1997).
http://dx.doi.org/10.1063/1.872103
46.
46. M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, Phys. Rev. Lett. 102, 045008 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.045008
47.
47. C. D. Chen, J. A. King, M. H. Key, K. U. Akli, F. N. Beg, H. Chen, R. R. Freeman, A. Link, A. J. Mackinnon, A. G. Macphee, P. K. Patel, M. Porkolab, R. B. Stephens, and L. D. Van Woerkom, Rev. Sci. Instrum. 79, 10E305 (2008).
48.
48. A. G. Macphee, K. U. Akli, F. N. Beg, C. D. Chen, H. Chen, R. Clark, D. S. Hey, R. R. Freeman, A. J. Kemp, M. H. Key, J. A. King, S. Le pape, A. Link, T. Y. Ma, H. Nakamura, D. T. Offermann, V. M. Ovchinnikov, P. K. Patel, T. W. Phillips, R. B. Stephens, R. Town, Y. Y. Tsui, M. S. Wei, L. D. Van Woerkom, and A. J. Mackinnon, Rev. Sci. Instrum. 79, 10F302 (2008).
http://dx.doi.org/10.1063/1.2978199
49.
49. S. Atzeni, Phys. Plasmas, 6, 3316 (1999).
http://dx.doi.org/10.1063/1.873571
50.
50. M. Tabak and D. Callaham, Nucl. Instrum. Methods A, 544, 48 (2005).
http://dx.doi.org/10.1016/j.nima.2005.01.279
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4891648
Loading
/content/aip/journal/adva/4/7/10.1063/1.4891648
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4891648
2014-07-28
2016-10-01

Abstract

A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4891648.html;jsessionid=MVGDa4kVwdsGq4qOZbZ_5zrM.x-aip-live-03?itemId=/content/aip/journal/adva/4/7/10.1063/1.4891648&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4891648&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4891648'
Right1,Right2,Right3,