Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, Phys. Plasmas, 1, 1626 (1994).
2. M. Tabak, D. Hinkel, S. Atzeni, E. M. Campbell, and K. Tanaka, Fusion Science and Technology, 49, 254 (2006).
3. S. Atzeni, J. R. Davies, L. Hallo, J. J. Honrubia, P. H. Maire, M. Olazabal-Loum´e, J. L. Feugeas, X. Ribeyre, A. Schiavi, G. Schurtz, J. Breil, and Ph. Nicola, Nucl. Fusion, 49, 055008 (2009).
4. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).
5. P. A. Norreys, R. Allott, R. J. Clarke, J. Collier, D. Neely, S. J. Rose, M. Zepf, M. Santala, A. R. Bell, K. Krushelnick, A. E. Dangor, N. C. Woolsey, R. G. Evans, H. Habara, and T. Norimatsu, Phys. Plasmas, 7, 3721 (2000).
6. R. Kodama, P. A. Norreys, K. Mima, A. E. Dangor, R. G. Evans, H. Fujita, Y. Kitagawa, K. Krushelnick, T. Mlyanaga, T. Norimatsu, S. J. Rose, T. Shuzaki, K. Kondo, K. Shigemor, A. Sunahara, M. Tempo, K. A. Tanaka, Y. Toyama, T. Yamanaka, and M. Zepf, Nature, 412, 798 (2001).
7. R. Kodama, K. A. Tanaka, S. Fujioka, H. Fujita, H. Habara, Y. Izawa, T. Jitsuno, Y. Kitagawa, K. Krushelnick, K. Mima, N. Miyanaga, K. Nagai, P. A. Norreys, T. Norimatsu, K. Shigemori, H. Shiraga, Y. Toyama, M. Zepf, and T. Yamanaka, Plasma Phys. Controlled Fusion, 44, B109 (2002).
8. R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, and A. A. Solodov, Phys. Rev. Lett. 98, 155001 (2007).
9. J. W. Bates, A. J. Schmitt, D. E. Fyfe, S. P. Obenschain, and S. T. Zalesak, High Energy Density Physics, 6, 128 (2010).
10. M. Lafon, X. Ribeyre, and G. Schurtz, Phys. Plasmas, 17, 052704 (2010).
11. B. Canaud and M. Temporal, New J. Phys. 12, 043037 (2010).
12. A. J. Schmitt, J. W. Bates, S. P. Obenschain, S. T. Zalesak, and D. E. Fyfe, Phys. Plasmas, 17, 042701 (2010).
13. M. D. Rosen, J. D. Lindl, and A. R. Thiessen, Laser Program Annual Report, Rep. UCRL-50021-83, Lawrence Livermore National Laboratory, CA, Sec. 3, P. 5 (1983).
14. A. H. Farahbod and S. A. Ghasemi, Iranian Journal of Physics Research, 12(4), 347 (2013).
15. S. A. Ghasemi and A. H. Farahbod, Iranian Journal of Physics Research, 13(4) 397 (2013).
16. S. A. Ghasemi and A. H. Farahhbod, AnnualPhysics Conference of Iran, 368, August 27–30,Yazd University Yazd (2012).
17. S. A. Ghasemi and A. H. Farahbod, Bull. Am. Phys. Soc. 58, V1308 (2013).
18. S. A. Ghasemi and A. H. Farahbod, Bull. Am. Phys. Soc. 59, J3312 (2014).
19. S. A. Ghasemi and A. H. Farahbod, Bull. Am. Phys. Soc. 59, C1200 (2014).
20. S. A. Slutz and R. A. Vesey, Phys. Plasmas, 12, 062702 (2005).
21. A. A. Solodov and R. Betti, Phys. Plasmas, 15, 042707 (2008).
22. S. Atzeni, A. Schiavi, and J. R. Davies, Plasma Phys. Control. Fusion, 51, 015016 (2009).
23. A. Pukhov and J. Meyer-ter-Vehn, Phys. Rev. Lett. 79, 2686 (1997).
24. A. L. Lei, A. Pukhov, R. Kodama, T. Yabuuchi, K. Adumi, K. Endo, R. R. Freeman, H. Habara, Y. Kitagawa, K. Kondo, G. R. Kumar, T. Matsuoka, K. Mima, H. Nagatomo, T. Norimatsu, O. Shorokhov, R. Snavely, X. Q. Yang, J. Zheng, and K. A. Tanaka, Phys. Review E, 76, 066403 (2007).
25. G. Li, R. Yen, C. Ren, T. L. Wang, J. Tonge, and W. B. Mori, Phys. Rev. Lett. 100, 125002 (2008).
26. G. Li, R. Yan, C. Ren, J. Tonge, and W. B. Mori, Phys. Plasmas, 18, 042703 (2011).
27. C. Ren, J. Tonge, G. Li, F. Fiuza, R. A. Fonseca, J. May, W. B. Mori, L. O. Silva, T. L. Wang, and R. Yan, Journal of Physics: Conference Series 125, 012046 (2008).
28. C. Ren, G. Li, R. Yan, J. Tonge, and W. B. Mori, FSC Meeting, August 4, 2010, Lawrence Livermore National Laboratory, CA.
29. A. Friou, E. Lafebvre, and L. Gremillet, Phys. Plasmas, 19, 022704 (2012).
30. S. Yu Guskov, “Plasma Physics Reports,” Pleiades Publishing Ltd. 39(1), 150 (2013).
31. R. H. H. Scott, C. Beaucourt, H.-P. Schlenvoigt, K. Markey, K. L. Lancaster, C. P. Ridgers, C. M. Brenner, J. Pasley, R. J. Gray, I. O. Musgrave, A. P.L Robinson, K. Li, M. M. Notley, J. R. Davies, S. D. Baton, J. J. Santos, J.-L. Feugeas, Ph. Nicola, G. Malka, V. T. Tikhonchuk, P. McKenna, D. Neely, S. J. Rose, and P. A. Norreys, Phys. Rev. Lett. 109, 015001 (2012).
32. Hong-bo Cai, Shao-ping Zhu, and X. T. He, Phys. Plasmas, 20, 072701 (2013).
33. S. Chawla, M. S. Wei, R. Mishra, K. U. Akli, C. D. Chen, H. S. McLean, A. Morace, P. K. Patel, H. Sawada, Y. Sentoku, R. B. Stephens, and F. N. Beg, Phys. Rev. Lett. 110, 025001 (2013).
34. W. Yu, L. Cao, M. Y. Yu, H. Cai, H. Xu, X. Yang, A. Lei, K. A. Tanaka, and R. Kodama, Laser and Particle Beams, 27, 109 (2009).
35. V. Mironov, N. Zharova, E. d’Humieres, R. Capdessus, and V. T. Tikhonchuk, Plasma Phys. Control. Fusion, 54, 095008 (2012).
36. N. Naumova, C. Labaune, T. Schlegel, V. T. Tikhonchuk, G. Mourou, and I. V. Sokolov, 35 th EPS Conference on Plasma Phys. Hersomissons, 9–13 June 2008 ECA, 32D, P-1.119 (2008).
37. S. Atzeni and M. Tabak, Plasma Phys. Controlled Fusion, 47, B769 (2005).
38. S. Atzeni, A. Shiavi, and C. Bellei, Phys. Plasmas, 14, 052702 (2007).
39. J. J. Honrubia and J. Meyer-ter Vehn, Journal of Physics: Conference Series, 112, 022055 (2008).
40. C. Bellei, L. Divol, A. J. Kemp, M. H. Key, D. J. Larson, D. J. Strozzi, M. M. Marinak, M. Tabak, and P. K. Patel, Phys. Plasmas, 20, 052704 (2013).
41. D. J. Strozzi, M. Tabak, D. J. Larson, L. Divol, A. J. Kemp, C. Bellei, M. M. Marinak, and M. H. Key, Phys. Plasmas, 19, 072711 (2012).
42. C. D. Zhou and R. Betti, Phys. Plasmas, 14, 072703 (2007).
43. S. Atzeni, A. Schiavi, and J. R. Davies, Plasma Phys. Control. Fusion, 51, 015016 (2009).
44. S. Atzeni, A. Schiavi, and J. R. Davies, 35th EPS Conference on Plasma Phys. Hersonissos, 9-13 June 2008 ECA, 32D, P-5.106 (2008).
45. F. N. Beg, A. R. Bell, A. E. Dangor, C. N. Danson, A. P. Fews, M. E. Glinsky, B. A. Hammel, P. Lee, P. A. Norreys, and M. Tatarakis, Phys. Plasmas, 4, 447 (1997).
46. M. G. Haines, M. S. Wei, F. N. Beg, and R. B. Stephens, Phys. Rev. Lett. 102, 045008 (2009).
47. C. D. Chen, J. A. King, M. H. Key, K. U. Akli, F. N. Beg, H. Chen, R. R. Freeman, A. Link, A. J. Mackinnon, A. G. Macphee, P. K. Patel, M. Porkolab, R. B. Stephens, and L. D. Van Woerkom, Rev. Sci. Instrum. 79, 10E305 (2008).
48. A. G. Macphee, K. U. Akli, F. N. Beg, C. D. Chen, H. Chen, R. Clark, D. S. Hey, R. R. Freeman, A. J. Kemp, M. H. Key, J. A. King, S. Le pape, A. Link, T. Y. Ma, H. Nakamura, D. T. Offermann, V. M. Ovchinnikov, P. K. Patel, T. W. Phillips, R. B. Stephens, R. Town, Y. Y. Tsui, M. S. Wei, L. D. Van Woerkom, and A. J. Mackinnon, Rev. Sci. Instrum. 79, 10F302 (2008).
49. S. Atzeni, Phys. Plasmas, 6, 3316 (1999).
50. M. Tabak and D. Callaham, Nucl. Instrum. Methods A, 544, 48 (2005).

Data & Media loading...


Article metrics loading...



A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd