Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Stangl, V. Holý, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).
2. A. Malachias, S. Kycia, G. Medeiros-Ribeiro, R. Magalhaes-Paniago, T. I. Kamins, and R. S. Williams, Phys. Rev. Lett. 91, 176101 (2003).
3. U. Denker, M. Stoffel, and O. G. Schmidt, Phys. Rev. Lett. 90, 196102 (2003).
4. G. Katsaros, G. Constantini, M. Stoffel, R. Esteban, A. Bitner, A. Rastelli, U. Denker, O. G. Schmidt, and K. Kern, Phys. Rev. B 72, 195320 (2005).
5. S. Chaparro, Y. Zhang, J. Drucker, D. Chandrasekhar, and D. Smith, Phys. Rev. Lett. 83, 1199 (1999).
6. P. Sonnet and P. C. Kelires, Phys. Rev. B 66, 205307 (2002).
7. P. Sonnet and P. C. Kelires, Appl. Phys. Lett. 85, 203 (2004).
8. G. Hadjisavvas and P. C. Kelires, Phys. Rev. B 72, 075334 (2005).
9. C. Lang, D. Cockayne, and D. Nguyen-Manh, Phys. Rev. B 72, 155328 (2005).
10. G. Medeiros-Ribeiro and R. S. Williams, Nano Lett. 7, 223 (2007).
11. N. Medhekar, V. Hegadekatte, and V. B. Shenoy, Phys. Rev. Lett. 100, 106104 (2008).
12. R. Gatti, F. Uhlik, and F. Montalenti, New J. Phys. 10, 083039 (2008);
12.R. Gatti, F. Uhlik, and F. Montalenti, J. Phys. Condens. Matter 21, 084217 (2009).
13. A. Rastelli, M. Stoffel, A. Malachias, T. Merdzhanova, G. Katsaros, K. Kern, T. Metzger, and O. G. Schmidt, Nano Lett. 8, 1404 (2008).
14. Y. Tu and J. Tersoff, Phys. Rev. Lett. 98, 096103 (2007).
15. X. B. Niu, G. B. Stringfellow, and F. Liu, Phys. Rev. Lett. 107, 076101 (2011).
16. G. Vantarakis, I. N. Remediakis, and P. C. Kelires, Phys. Rev. Lett. 108, 176102 (2012).
17. P. C. Kelires and J. Tersoff, Phys. Rev. Lett. 63, 1164 (1989).
18. P. C. Kelires, Phys. Rev. Lett. 75, 1114 (1995);
18.P. C. Kelires, Appl. Surf. Sci. 102, 12 (1996);
18.P. C. Kelires, Inter. J. Mod. Phys. C 9, 357 (1998);
18.P. C. Kelires, Europhys. Lett. 14, 43 (1991).
19. A. Pascale, I. Berbezier, A. Ronda, and P. C. Kelires, Rev. B 77, 075311 (2008).
20. T. Leontiou, J. Tersoff, and P. C. Kelires, Phys. Rev. Lett. 105, 236104 (2010).
21. E. Kaxiras and K. C. Pandey, Phys. Rev. Lett. 62, 2484 (1988).
22. P. Boguslawski and J. Bernholc, Phys. Rev. Lett. 88, 166101 (2002).
23. D. J. Shu, F. Liu, and X. G. Gong, Phys. Rev. B 64, 245410 (2001).
24. L. Huang, F. Liu, G. H. Lu, and X. G. Gong, Phys. Rev. Lett. 96, 016103 (2006).
25. B. Uberuaga, M. Leskovar, A. Smith, H. Jonsson, and M. Olmstead, Phys. Rev. Lett. 84, 2441 (2000).
26. F. Zipoli, S. Cereda, M. Ceriotti, M. Bernasconi, Leo Miglio, and F. Montalenti, Appl. Phys. Lett. 92, 191908 (2008).
27.To accelerate diffusion events, we may lower all barriers by the same fraction, or raise the temperature. The CP shape remains unaltered.
28. F. LeGoues, V. Kesan, S. Iyer, J. Tersoff, and R. Tromp, Phys. Rev. Lett. 64, 2038 (1990).
29. A. Malachias, T. Schulli, G. Medeiros-Ribeiro, L. Cancado, M. Stoffel, O. Schmidt, T. Metzger, and R. Magalhaes-Paniago, Phys. Rev. B 72, 165315 (2005);
29.M.-I. Richard et al., Eur. Phys. J. Special Topics 167, 3 (2009).
30. A. Malachias, M. Stoffel, M. Schmidbauer, T. Schulli, G. Medeiros-Ribeiro, O. G. Schmidt, R. Magalhaes-Paniago, and T. H. Metzger, Phys. Rev. B 82, 035307 (2010).
31.Parallelization is achieved by dividing the computational cell into a system of grids, each assigned to a different processor. Local Monte-Carlo sampling is performed by each processor in the bulk of its assigned domain, thus avoiding the need of communication with neighboring processors. Detailed balance is preserved by randomly shifting the system of grids after each local Monte-Carlo sampling. The communication required during a shift of the grids is limited to receiving a boundary and sending another to the neighboring processors.
32. J. Tersoff, Phys. Rev. B 39, 5566 (1989).
33. M. S. Leite, G. Medeiros-Ribeiro, T. I. Kamins, and R. S. Williams, Phys. Rev. Lett. 98, 165901 (2007).
34. M. S. Leite, A. Malachias, S. W. Kycia, T. I. Kamins, R. S. Williams, and G. Medeiros-Ribeiro, Phys. Rev. Lett. 100, 226101 (2008).
35. F. Liu and M. G. Lagally, Phys. Rev. Lett. 76, 3156 (1996).
36. Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Phys. Rev. Lett. 65, 1020 (1990).
37. P. Sutter and M. G. Lagally, Phys. Rev. Lett. 84, 4637 (2000).
38.The formation energy of an island with a given CP is defined as the total energy of the system (substrate, WL, and island) relative to the sum of the cohesive energies (chemical potentials) of its constituents, all calculated at 900 K. The constituent cohesive energies equal the sum of the respective chemical potentials (cohesive energies per atom) of the bulk materials (crystalline Si and Ge) times the number of atoms in the constituent.
39.The extent of the corner regions is extracted from the dimensions of the Si-rich (xGe < 0.35) areas in Fig. 3(a).

Data & Media loading...


Article metrics loading...



Atomistic Monte Carlo simulations, coupling thermodynamic and kinetic effects, resolve a longstanding controversy regarding the origin of composition profiles in heteroepitaxial SiGe quantum dots. It is shown that profiles with cores rich in the unstrained (Si) component derive from near-equilibrium processes and intraisland diffusion. Profiles with cores rich in the strained (Ge) component are of nonequilibrium nature, i.e., they are strain driven but kinetically limited. They are shaped by the distribution of kinetic barriers of atomic diffusion in the islands. The diffusion pathways are clearly revealed for the first time. Geometrical kinetics play a minor role.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd