Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/7/10.1063/1.4892076
1.
1. A. Khelif, Y. Achaoui, and B. Aoubiza, AIP Advances 1, 041404 (2011).
http://dx.doi.org/10.1063/1.3675923
2.
2. Y. Tanaka, T. Yano, and S.-i. Tamura, Wave Motion 44(6), 501 (2007).
http://dx.doi.org/10.1016/j.wavemoti.2007.02.009
3.
3. J. Pierre, B. Bonello, O. Boyko, and L. Belliard, Journal of Physics: Conference Series 214, 012048 (2010).
http://dx.doi.org/10.1088/1742-6596/214/1/012048
4.
4. Y. Pennec, J. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, and P. Deymier, Surface Science Reports 65(8), 229 (2010).
http://dx.doi.org/10.1016/j.surfrep.2010.08.002
5.
5. T. Miyashita, Measurement Science and Technology 16(5), R47 (2005).
http://dx.doi.org/10.1088/0957-0233/16/5/R01
6.
6. V. Laude, M. Wilm, S. Benchabane, and A. Khelif, Physical Review E 71(3), 036607 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.036607
7.
7. J.-H. Sun and T.-T. Wu, Physical Review B 74(17), 174305 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.174305
8.
8. D. Yudistira, Y. Pennec, B. D. Rouhani, S. Dupont, and V. Laude, Appl. Phys. Lett. 100, 061912 (2012).
http://dx.doi.org/10.1063/1.3684839
9.
9. T-T. Wu, Z-C. Hsu, and Z-G. Huang, Physical Review B 71, 064303 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.064303
10.
10. M. Wilm, A. Khelif, S. Ballandras, V. Laude, and B. Djafari-Rouhani, Physical Review E 67, 065602(R) (2003).
http://dx.doi.org/10.1103/PhysRevE.67.065602
11.
11. D. Parkhomenko, S. Kolenov, V. Grigoruk, and N. Movchan, Journal of Experimental and Theoretical Physics 112(5), 799 (2010).
http://dx.doi.org/10.1134/S1063776111040108
12.
12. Y. Achaoui, A. Khelif, S. Benchabane, L. Robert, and V. Laude, Physical Review B 83(10), 104201 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104201
13.
13. M. B. Assouar and M. Oudich, Appl. Phys. Lett. 99, 123505 (2011).
http://dx.doi.org/10.1063/1.3626853
14.
14. L. Sz-Chin Steven and T. Jun Huang, Physical Review B 83, 174303 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174303
15.
15. C. Charles, B. Bonello, and F. Ganot, Ultrasonics 44(suppl.), e1209 (2006).
http://dx.doi.org/10.1016/j.ultras.2006.05.096
16.
16. B. Graczykowski, S. Mielcarek, A. Trzaskowska, P. Patoka, and M. Giersig, AIP Conf. Proc. 1433, 263 (2012).
http://dx.doi.org/10.1063/1.3703185
17.
17. H. Estrada, P. Candelas, F. Belmar, A. Uris, F. J. G. de Abajo, and F. Meseguer, Physical Review B 85(17), 174301 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.174301
18.
18. I. Veres, D. Profunser, O. Wright, O. Matsuda, and U. Lang, Proceedings - IEEE Ultrasonics Symposium, 5441862.
19.
19. Y. Tanaka and S. Tamura, Physical Review B 58(12) (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7958
20.
20. T. Wu, Z. Huang, and S. Lin, Physical Review B 69, 094301 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.094301
21.
21. Y. Tanaka, Y. Tomoyasu, and S. Tamura, Physical Review B 62(11) (2000).
http://dx.doi.org/10.1103/PhysRevB.62.7387
22.
22.The densities and elasticity coefficients used in the above simulations are: silicon: ρ = 2332[kg/m3], c11 = 166[GPa], c12 = 64[GPa], c44 = 79.6[GPa]; nickel: ρ = 8909[kg/m3], c11 = 261[GPa], c12 = 151[GPa], c44 = 130.9[GPa]; vacuum (PWM): ρ = 10−4[kg/m3], c11 = c44 = 1[MPa].
23.
23. L. Gerald and P. Wheatley, Applied Numerical Analysis (Oxford University Press, 2005).
24.
24. J. D. Joannopoulus, “Photonic crystals: Molding the flow of light,” (Princeton University Press, 2008) Chap. 3.
25.
25. G. Farnell, and E. Adler, “Elastic wave propagation in thin layers,” in Physical Acoustics, edited by W. Farnell Mason and R. Adler Thurston (Academic Press, 1972).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/7/10.1063/1.4892076
Loading
/content/aip/journal/adva/4/7/10.1063/1.4892076
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/7/10.1063/1.4892076
2014-07-31
2016-12-03

Abstract

We have performed simulations of dispersion relations for surface acoustic waves in two-dimensional phononic crystal by the finite elements method (FEM) and by the plane wave method (PWM). Considered medium is a thin nickel layer on a silicon single crystal (001) surface. The nickel film is decorated with cylindrical holes of the depth equal to the nickel film thickness arranged in a square lattice. We have obtained full bandgaps for the surface waves propagating in the medium of particular range of filling factor and layer thickness. The width of the bandgap had reached over 500[] for the sample of the lattice constant 500[] and is sufficient for experimental design.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/7/1.4892076.html;jsessionid=vsh4kcGGmBTGqO6sAXXtcioY.x-aip-live-02?itemId=/content/aip/journal/adva/4/7/10.1063/1.4892076&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/7/10.1063/1.4892076&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/7/10.1063/1.4892076'
Right1,Right2,Right3,