Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4890290
1.
1. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and Z. Ma, An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore (2005).
2.
2. C. M. Wu, H. G. Chiou, S. L. Lin, and J. M. Lin, J. Appl. Polym. Sci. 126, E89 (2012).
http://dx.doi.org/10.1002/app.36680
3.
3. C. Wang, H. S. Chien, C. H. Hsu, C. T. Wang, and H. A. Lu, Macromolecule 40, 7973 (2007).
http://dx.doi.org/10.1021/ma070508n
4.
4. R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, and J. H. Wendroff, Polym. Adv. Technol. 16, 276 (2005).
http://dx.doi.org/10.1002/pat.568
5.
5. Z. M. Huang, Y. Z. Zhang, M. Kotakic, and S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003).
http://dx.doi.org/10.1016/S0266-3538(03)00178-7
6.
6. K. Sun and Z. H. Li, Express Polym. Lett. 5, 342 (2011).
http://dx.doi.org/10.3144/expresspolymlett.2011.34
7.
7. Z. K. Nagy, K. Nyul, I. Wagner, K. Monlnar, and G. Marosi, Express Polym. Lett. 4, 763 (2010).
http://dx.doi.org/10.3144/expresspolymlett.2010.92
8.
8. C. Feng, K. C. Khulbe, and T. J. Matsuura, J. Appl. Polym. Sci. 115, 756 (2010).
http://dx.doi.org/10.1002/app.31059
9.
9. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, Polymer 42, 261 (2001).
http://dx.doi.org/10.1016/S0032-3861(00)00250-0
10.
10. D. A. Saville, Phys Fluids 14, 1095 (1971);
http://dx.doi.org/10.1063/1.1693569
10.P. Heikkila and A. Harlin, Eur. Polym. J. 44, 3067 (2008).
http://dx.doi.org/10.1016/j.eurpolymj.2008.06.032
11.
11. B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, Polymer 45, 1895 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.01.026
12.
12. S. A. Theron, A. L. Yarin, E. Zussman, and E. Kroll, Polymer 46, 2889 (2005).
http://dx.doi.org/10.1016/j.polymer.2005.01.054
13.
13. G. H. Kim, Y. S. Cho, and W. D. Kim, Eur. Polym. J. 42, 2031 (2006).
http://dx.doi.org/10.1016/j.eurpolymj.2006.01.026
14.
14. A. Holzmeister, M. Rudisile, A. Greiner, and J. H. Wendorff, Eur Polym J. 43, 4859 (2007).
http://dx.doi.org/10.1016/j.eurpolymj.2007.09.014
15.
15. A. L. Yarin and E. Zussman, Polymer 45, 2977 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.02.066
16.
16. Rafael Contreras- Caceres, Claudine Dawson, Petr Formanek, Dieter Fischer, Frank Simon, Andreas Janke, Petra Uhlmann, and Manfred Stamm, Chem. Mater. 25, 158169 (2013).
http://dx.doi.org/10.1021/cm3031329
17.
17. E. Hutter and J. H. Fendler, Adv. Mater. 16, 16851706 (2004).
http://dx.doi.org/10.1002/adma.200400271
18.
18. Janina Kneipp, Harald Kneipp, and Katrin Kneipp, Chem. Soc. Rev. 37, 10521060 (2008).
http://dx.doi.org/10.1039/b708459p
19.
19. W. E. Smith, Chem. Soc. Rev. 37, 955964 (2008).
http://dx.doi.org/10.1039/b708841h
20.
20. J. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nano Today 2, 1829 (2007).
http://dx.doi.org/10.1016/S1748-0132(07)70016-6
21.
21. B. I. Ipe, K. G. Thomas, S. Barazzouk, S. Hotchandani, P. V. Kamat, and J. Phys, Chem. B 106, 1821 (2002).
http://dx.doi.org/10.1021/jp0134695
22.
22. W. Caseri, Macromol. Rapid Commun. 21, 705722 (2000).
http://dx.doi.org/10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO;2-3
23.
23. B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
24.
24. J. R. Cole, and N. J. Halas, Appl. Phys. Lett. 89, 153120 (2006).
http://dx.doi.org/10.1063/1.2360918
25.
25. H. J. Zhai, D. W. Wang, and H. S. Wang, J. Nanosci. Nanotechnol. 6, 1968 (2006).
http://dx.doi.org/10.1166/jnn.2006.320
26.
26. S. Yamamoto and H. Watarai, Langmuir 22, 6562 (2006).
http://dx.doi.org/10.1021/la0603119
27.
27. O. Choi, K. K. Deng, N. J. Kim, L. Ross, Jr., Rao Y. Surampalli, and Z. Hu, Water Res. 42, 3066 (2008).
http://dx.doi.org/10.1016/j.watres.2008.02.021
28.
28. N. Savage and M. S. Diallo, J. Nanoparticle Res. 7, 331 (2005).
http://dx.doi.org/10.1007/s11051-005-7523-5
29.
29. V. Sambhy, M. M. MAcBride, and B. R. Peterson, J. Am. Chem. Soc. 128, 9798 (2006).
http://dx.doi.org/10.1021/ja061442z
30.
30. S. Pal, Y. K. Tak, and J. M. Song, Appl. Environ. Microbiol. 73, 1712 (2007).
http://dx.doi.org/10.1128/AEM.02218-06
31.
31. M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977).
http://dx.doi.org/10.1021/ja00457a071
32.
32. J. N. Anker, W. P. Hall, O. Lyandres, N. C. , Shah, J. Zhao, and R. P. Van Duyne, Nat Mater. 7, 442 (2008).
http://dx.doi.org/10.1038/nmat2162
33.
33. J. F. Li, Y. F. Huanf, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, Nature 464, 392 (2010).
http://dx.doi.org/10.1038/nature08907
34.
34. X. M. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. M. Nie, Nat. Biotechnol. 26, 83 (2008).
http://dx.doi.org/10.1038/nbt1377
35.
35. M. K. Fan, G. F. S. Andrade, and A. G. Brolo, Anal. Acta 693, 7 (2011).
http://dx.doi.org/10.1016/j.aca.2011.03.002
36.
36. I. A. Larmour, K. Faulds, and D. Graham, Chem. Sci. 1, 151 (2010).
http://dx.doi.org/10.1039/c0sc00226g
37.
37. De-Yin Wu, Jian-Feng Li, Bin Ren, and Zhong-Qun Tian, Chem. Soc. Rev. 37, 1025 (2008).
http://dx.doi.org/10.1039/b707872m
38.
38. I. A. Larmour, K. Faulds, and D. Graham, Chem. Sci. 1, 151 (2010).
http://dx.doi.org/10.1039/c0sc00226g
39.
39. K. Kneipp, H. Kneipp, I. Itzkan, R. Dasari, and M. Feld, Chem. Rev. 99, 2957 (1999).
http://dx.doi.org/10.1021/cr980133r
40.
40. H. Xu, E. J. Bjerneld, M. Käll, and L. Borjesson, Phys. Rev. Lett. 83, 4357 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4357
41.
41. A. M. Michaels, J. Jiang, and L. Brus, J. Phys. Chem. B 104, 11965 (2000).
http://dx.doi.org/10.1021/jp0025476
42.
42. S. L. Kleinman, E. Ringe, N. Valley, K. L. Wustholz, E. Phillips, K. A. Scheidt, G. C. Schatz, and R. P. Van Duyne, J. Am. Chem. Soc. 133, 4115 (2011).
http://dx.doi.org/10.1021/ja110964d
43.
43. M. J. Weaver, J. Raman Spectrosc. 33, 309 (2002).
http://dx.doi.org/10.1002/jrs.822
44.
44. R. S. Eachus, A. P. Marchetti, and A. A. Muenter, Annu. Rev. Phys. Chem. 50, 117 (1999).
http://dx.doi.org/10.1146/annurev.physchem.50.1.117
45.
45. G. M. Koretsky and M. B. Knickelbein, J. Chem. Phys. 107, 10555 (1997).
http://dx.doi.org/10.1063/1.474219
46.
46. S. H. Kim, G. Medeiros-Ribeiro, D. A. A. Ohlberg, R. Stanley Williams, and J. R. Heath, J. Phys. Chem. 103, 10341 (1999).
http://dx.doi.org/10.1021/jp991952y
47.
47. W.-T. Chan and R. Fournier, Chem. Phys. Lett. 315, 257 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)01195-1
48.
48. D. Vanderbilt, Phys. Rev. B: Condens. Matter. 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
49.
49. P. E. Blochl, Phys. Rev. B: Condens. Matter. 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
50.
50. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.1045
51.
51. P. Hu, D. A. King, S. Crampin, M. H. Lee, and M. C. Payne, Chem. Phys. Lett. 230, 501 (1994).
http://dx.doi.org/10.1016/0009-2614(94)01184-2
52.
52. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B: Condens. Matter. 46, 6671 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6671
53.
53. J. P. Perdew, Electronic Structure in Solids ‘91, P. Ziesche and H. Eschrig, Eds. (Akademie Verlag, Berlin, 1991).
54.
54. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter. 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
55.
55. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter. 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
56.
56. G. Kresse and J. Furthmuller, Comp. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
57.
57. G. Henkelmana, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.04.010
58.
58. E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman, J Comput. Chem. 28, 899 (2007).
http://dx.doi.org/10.1002/jcc.20575
59.
59. A. Kokalj, Comput. Mater. Sci. 28, 155 (2003).
http://dx.doi.org/10.1016/S0927-0256(03)00104-6
60.
60. A. Gautam and S. Ram, Mater. Chem. Phys. 119, 266 (2010).
http://dx.doi.org/10.1016/j.matchemphys.2009.08.050
61.
61. D. Sajan, V. Bena Jothy, T. Kuruvilla, and I. H. Joe, J. Chem. Sci. 122, 511 (2010).
http://dx.doi.org/10.1007/s12039-010-0085-9
62.
62. J. S. Suh and J. Kim, J. Raman. Spectrosc. 29, 143 (1998).
http://dx.doi.org/10.1002/(SICI)1097-4555(199802)29:2<143::AID-JRS204>3.0.CO;2-#
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4890290
Loading
/content/aip/journal/adva/4/8/10.1063/1.4890290
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4890290
2014-08-07
2016-12-09

Abstract

The interaction of polyvinylalcohol (PVA) nanofibers with silver (Ag) nanoparticles (mean diameter 8nm) has been modeled using density functional theory (DFT) calculations. The physical adsorption of PVA through the hydroxyl group, to the Ag, and its corresponding molecular orientation was compared with experimental results obtained from surface-enhanced Raman scattering (SERS) studies of the same material. A good agreement was found between the computational model of the vibrational spectrum of the adsorbate and the experimentally observed SERS. In general, aliphatic capping molecules are used to passivate the surface of Ag nanocrystals (55 = atomic number of Ag). In this study, a DFT simulation was employed to show binding energies and electron contour map analyses of Ag with PVA. Here we show that the PVA interacts with the Ag nanoparticle's surface, through the OH group, thereby contributing significantly to the increase in SERS activity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4890290.html;jsessionid=8dFwX0UlO-29TBbKdZZc1LQ0.x-aip-live-02?itemId=/content/aip/journal/adva/4/8/10.1063/1.4890290&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4890290&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4890290'
Right1,Right2,Right3,