Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4891822
1.
1. S. Mallat, IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), 674693 (1989).
http://dx.doi.org/10.1109/34.192463
2.
2. S. Mallat and W. L. Hwang, IEEE Transaction on Information Theory 38(2), 617643 (1992).
http://dx.doi.org/10.1109/18.119727
3.
3. D. L. Donoho, IEEE Transaction on Information 3, 613627 (1995).
http://dx.doi.org/10.1109/18.382009
4.
4. R. R. Coifman and D. L. Donoho (Springer-Verlag, New York, 1995) p. 125.
5.
5. T. H. Chen, L. Q. Han, and P. Y. Guo, Computer Simulation 27, 401 (2010).
6.
6. J. Y. Zhao, H. Y. Liu, H. S. Ma, and H. D. Zhou, Chinese Journal of Biomedical Engineering 25, 538 (2006).
7.
7. S. A. Mallat, Wavelet Tour of Signal Processing 3 (China Machine Press, Beijing, 2010), p. 22.
8.
8. Y. B. Fan, Z. K. Pan, and Z. Y. Wang, Wavelets: Theory, Algorithms and Filter Banks (Science Press Ltd, Beijing), p. 47.
9.
9. Q. Xiong, S. H. Zhou, R. M. Li, Z. D. Wang, and J. P. Zeng, Journal of Jishou University(Natural sciences edition) 31, 61 (2010).
10.
10. Sheila R. Messer, John Agzarian, and Derek Abbott, Microelectronics Journal 32, 931 (2001).
http://dx.doi.org/10.1016/S0026-2692(01)00095-7
11.
11. F. Meziani, S. M. Debbal, and A. Atbi, Journal of Medical Engineering & Technology 36, 283 (2012).
http://dx.doi.org/10.3109/03091902.2012.684830
12.
12. Y. Ma and X. F. Cheng, Acta Phys. Sin. 63, 068703 (2014).
13.
13. H. K. Walker, W. D. Hall, J. W. Hurst, Clinical Methods: The History, Physical, and Laboratory Examinations. (Butterworth Publishers, 1990) Chapter 22 and 23.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4891822
Loading
/content/aip/journal/adva/4/8/10.1063/1.4891822
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4891822
2014-08-06
2016-10-01

Abstract

In the field of heart sound signal denoising, the wavelet transform has become one of the most effective measures. The selective wavelet basis is based on the well-known orthogonal db series or biorthogonal bior series wavelet. In this paper we present a self-construct wavelet basis which is suitable for the heart sound denoising and analyze its constructor method and features in detail according to the characteristics of heart sound and evaluation criterion of signal denoising. The experimental results show that the heart sound wavelet can effectively filter out the noise of the heart sound signals, reserve the main characteristics of the signal. Compared with the traditional wavelets, it has a higher signal-to-noise ratio, lower mean square error and better denoising effect.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4891822.html;jsessionid=-_3RO8hbzbO2bO8BU5UPEn5E.x-aip-live-06?itemId=/content/aip/journal/adva/4/8/10.1063/1.4891822&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4891822&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4891822'
Right1,Right2,Right3,