Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4892523
1.
1. A. Ben-Naim, Molecular Theory of Water and Aqueous Solutions. Part I: Understanding Water (World Scientific Publishing Co., 2009).
2.
2. E. A. Jagla, J. Chem. Phys. 111, 8980 (1999).
http://dx.doi.org/10.1063/1.480241
3.
3. Y. Tu, S. Buldyrev, Z. Liu, H. Fang, and H. E. Stanley, Europhys. Lett. 97, 56005 (2012).
http://dx.doi.org/10.1209/0295-5075/97/56005
4.
4. V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009).
http://dx.doi.org/10.1021/jp805227c
5.
5. A. Ben-Naim, J. Chem. Phys. 54, 3682 (1971).
http://dx.doi.org/10.1063/1.1675414
6.
6. T. Truskett and K. Dill, J. Phys. Chem. B 106, 11829 (2002).
http://dx.doi.org/10.1021/jp021418h
7.
7. T. Truskett and K. A. Dill, J. Chem. Phys. 117, 5101 (2002).
http://dx.doi.org/10.1063/1.1505438
8.
8. T. Truskett and K. Dill, Biophys. Chem. 105, 449 (2003).
http://dx.doi.org/10.1016/S0301-4622(03)00107-8
9.
9. A. Ben-Naim, J. Chem. Phys. 128, 0245051 (2008).
http://dx.doi.org/10.1063/1.2938859
10.
10. L. Heckmann and B. Drossel, J. Chem. Phys. 137, 064503 (2012).
http://dx.doi.org/10.1063/1.4742332
11.
11. P. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Nature 360, 324 (1992).
http://dx.doi.org/10.1038/360324a0
12.
12. C. A. Angell, Science 319, 582 (2008).
http://dx.doi.org/10.1126/science.1131939
13.
13. S. Sastry, P. Debenedetti, F. Sciortino, and H. E. Stanley, Phys. Rev. E 53, 6144 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.6144
14.
14. R. J. Speedy, J. Phys. Chem. 86, 982 (1982).
http://dx.doi.org/10.1021/j100395a030
15.
15. R. J. Speedy, J. Phys. Chem. 86, 3002 (1982).
http://dx.doi.org/10.1021/j100212a038
16.
16. G. Franzese and H. Stanley, J. Phys.: Condens. Matter 14, 2201 (2002).
http://dx.doi.org/10.1088/0953-8984/14/9/309
17.
17. G. Franzese and H. Stanley, Physica A 314, 508 (2002).
http://dx.doi.org/10.1016/S0378-4371(02)01186-X
18.
18. G. Franzese and H. E. Stanley, J. Phys.: Condens. Matter 19, 205126 (2007).
http://dx.doi.org/10.1088/0953-8984/19/20/205126
19.
19. M. G. Mazza, K. Stokely, E. Strekalova, H. E. Stanley, and G. Franzese, Computer Physics Communications 180, 497 (2009).
http://dx.doi.org/10.1016/j.cpc.2009.01.018
20.
20. K. Stokely, M. G. Mazza, H. E. Stanley, and G. Franzese, PNAS 107, 1301 (2010).
http://dx.doi.org/10.1073/pnas.0912756107
21.
21. F. de los Santos and G. Franzese, Phys. Rev. E 85, 010602(R) (2012).
http://dx.doi.org/10.1103/PhysRevE.85.010602
22.
22. M. Mazza, K. Stokely, H. Stanley, and G. Franzese, J. Chem. Phys. 137, 204502 (2012).
http://dx.doi.org/10.1063/1.4767355
23.
23. L. Heckmann and B. Drossel, J. Chem. Phys. 138, 234503 (2013).
http://dx.doi.org/10.1063/1.4810875
24.
24. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
http://dx.doi.org/10.1103/RevModPhys.54.235
25.
25. T. Kihiara, Y. Midzuno, and J. Shizume, J. Phys. Soc. Jpn. 9, 681 (1954).
http://dx.doi.org/10.1143/JPSJ.9.681
26.
26. Y. Y. Goldschmidt, Phys. Rev. B 24, 1374 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.1374
27.
27. G. Franzese, M. Yamada, and H. E. Stanley, AIP Conf. Proc. 519, 281 (2000).
http://dx.doi.org/10.1063/1.1291569
28.
28. F. Sciortino, I. Saika-Voivod, and P. Poole, Phys. Chem. Chem. Phys. 13, 19759 (2011).
http://dx.doi.org/10.1039/c1cp22316j
29.
29. Y. Liu, J. C. Palmer, A. Panagiotopoulos, and P. Debenedetti, J. Chem. Phys. 137, 214505 (2012).
http://dx.doi.org/10.1063/1.4769126
30.
30. P. Poole, R. Bowles, I. Saika-Voivod, and F. Sciortino, J. Chem. Phys. 138, 034505 (2013).
http://dx.doi.org/10.1063/1.4775738
31.
31. D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).
http://dx.doi.org/10.1063/1.3643333
32.
32. D. Limmer and D. Chandler, J. Chem. Phys. 138, 214504 (2013).
http://dx.doi.org/10.1063/1.4807479
33.
33. A. Soper and M. Ricci, Phys. Rev. Lett. 84, 2881 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2881
34.
34. O. Mishima, Phys. Rev. Lett. 85, 334 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.334
35.
35. Y. Zhang, A. Faraone, W. A. Kamitakahara, K.-H. Liu, C.-Y. Mou, J. B. Leao, S. Chang, and S.-H. Chen, PNAS 108, 12206 (2011).
http://dx.doi.org/10.1073/pnas.1100238108
36.
36. M. Blume, V. J. Emery, and R. B. Griffiths, Phys. Rev. A 4, 1071 (1971).
http://dx.doi.org/10.1103/PhysRevA.4.1071
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4892523
Loading
/content/aip/journal/adva/4/8/10.1063/1.4892523
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4892523
2014-08-05
2016-12-09

Abstract

A cell model that has been proposed by Stanley and Franzese in 2002 for modeling water is based on Potts variables that represent the possible orientations of bonds between water molecules. We show that in the liquid phase, where all cells are occupied by a molecule, the Hamiltonian of the cell model can be rewritten as a Hamiltonian of a conventional Potts model, albeit with two types of coupling constants. We argue that such a model, while having a first-order phase transition, cannot display the critical end point that is postulated for the phase transition between a high- and low-density liquid. A closer look at the mean-field calculations that claim to find such an end point in the cell model reveals that the mean-field theory is constructed such that the symmetry constraints on the order parameter are violated. This is equivalent to introducing an external field. The introduction of such a field can be given a physical justification due to the fact that water does not have the type of long-range order occurring in the Potts model.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4892523.html;jsessionid=xBRWcKsoxyZkNkNQ7mWnxXRP.x-aip-live-02?itemId=/content/aip/journal/adva/4/8/10.1063/1.4892523&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4892523&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4892523'
Right1,Right2,Right3,