Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4892526
1.
1. J. Alstrup, M. Jørgensen, A. J. Medford, and F. C. Krebs, ACS Appl. Mater. Interfaces 2, 2819 (2010).
http://dx.doi.org/10.1021/am100505e
2.
2. J. Halls, C. Walsh, N. Greenham, E. Marseglia, R. H. Friend, S. Moratti, and A. Holmes, Nature 376, 498 (1995).
http://dx.doi.org/10.1038/376498a0
3.
3. G. Yu and A. J. Heeger, J. Appl. Phys. 78, 4510 (1995).
http://dx.doi.org/10.1063/1.359792
4.
4. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
5.
5. C. Deibel and V. Dyakonov, Reports Prog. Phys. 73, 096401 (2010).
http://dx.doi.org/10.1088/0034-4885/73/9/096401
6.
6. P. Müller-Buschbaum, Adv. Mater. 1521 (2014).
7.
7. S. Westenhoff, I. Howard, and R. Friend, Phys. Rev. Lett. 101, 016102 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.016102
8.
8. M. A. Ruderer, R. Meier, L. Porcar, R. Cubitt, and P. Müller-Buschbaum, J. Phys. Chem. Lett. 5, 683 (2012).
http://dx.doi.org/10.1021/jz300039h
9.
9. A. P. L. Böttiger, M. Jørgensen, A. Menzel, F. C. Krebs, and J. W. Andreasen, J. Mater. Chem. 22, 22501 (2012).
http://dx.doi.org/10.1039/c2jm34596j
10.
10. H. Sirringhaus, P. J. Brown, and R. H. Friend, Nature 401, 685 (1999).
http://dx.doi.org/10.1038/44359
11.
11. A. Salleo, T. W. Chen, A. R. Völkel, and R. a. Street, Phys. Rev. B 70, 115311 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115311
12.
12. D. Chen, A. Nakahara, D. Wei, D. Nordlund, and T. P. Russell, Nano Lett. 11, 561 (2011).
http://dx.doi.org/10.1021/nl103482n
13.
13. M. Sanyal, B. Schmidt-Hansberg, M. F. G. Klein, A. Colsmann, C. Munuera, A. Vorobiev, U. Lemmer, W. Schabel, H. Dosch, and E. Barrena, Adv. Energy Mater. 1, 363 (2011).
http://dx.doi.org/10.1002/aenm.201100007
14.
14. K. W. Chou, B. Yan, R. Li, E. Q. Li, K. Zhao, D. H. Anjum, S. Alvarez, R. Gassaway, A. Biocca, S. T. Thoroddsen, A. Hexemer, and A. Amassian, Adv. Mater. 25, 1923 (2013).
http://dx.doi.org/10.1002/adma.201203440
15.
15. J. E. Carlé, T. R. Andersen, M. Helgesen, E. Bundgaard, M. Jørgensen, J. E. Carle, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 108, 126 (2013).
http://dx.doi.org/10.1016/j.solmat.2012.09.008
16.
16. J. E. Carlé, M. Helgesen, M. V. Madsen, E. Bundgaard, and F. C. Krebs, J. Mater. Chem. C 2, 1290 (2014).
http://dx.doi.org/10.1039/c3tc31859a
17.
17. H. F. Dam and F. C. Krebs, Sol. Energy Mater. Sol. Cells 97, 191 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.08.027
18.
18. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 465 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.12.012
19.
19. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.10.004
20.
20. B. Schmidt-Hansberg, M. Sanyal, M. F. G. Klein, M. Pfaff, N. Schnabel, S. Jaiser, A. Vorobiev, E. Müller, A. Colsmann, P. Scharfer, D. Gerthsen, U. Lemmer, E. Barrena, and W. Schabel, ACS Nano 5, 8579 (2011).
http://dx.doi.org/10.1021/nn2036279
21.
21. F. Liu, Y. Gu, J. W. Jung, W. H. Jo, and T. P. Russell, J. Polym. Sci. Part B Polym. Phys. 50, 1018 (2012).
http://dx.doi.org/10.1002/polb.23063
22.
22. P. Scherrer, Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen (1918).
23.
23. B. A. Collins, E. Gann, L. Guignard, X. He, C. R. McNeill, and H. Ade, J. Phys. Chem. Lett. 1, 3160 (2010).
http://dx.doi.org/10.1021/jz101276h
24.
24. M. V. Madsen, K. O. Sylvester-Hvid, B. Dastmalchi, K. Hingerl, K. Norrman, T. Tromholt, M. Manceau, D. Angmo, and F. C. Krebs, J. Phys. Chem. C 115, 10817 (2011).
http://dx.doi.org/10.1021/jp2004002
25.
25. D. S. Germack, C. K. Chan, R. J. Kline, D. a. Fischer, D. J. Gundlach, M. F. Toney, L. J. Richter, and D. M. DeLongchamp, Macromolecules 43, 3828 (2010).
http://dx.doi.org/10.1021/ma100027b
26.
26. C. J. Schaffer, C. M. Palumbiny, M. A. Niedermeier, C. Jendrzejewski, G. Santoro, S. V. Roth, and P. Müller-Buschbaum, Adv. Mater. 25, 6760 (2013).
http://dx.doi.org/10.1002/adma.201302854
27.
27. K. Norrman, A. Ghanbari-Siahkali, and N. B. Larsen, Annu. Reports Sect. “C” Physical Chem. 101, 174 (2005).
http://dx.doi.org/10.1039/b408857n
28.
28. K. W. Chou, B. Yan, R. Li, E. Q. Li, K. Zhao, D. H. Anjum, S. Alvarez, R. Gassaway, A. Biocca, S. T. Thoroddsen, A. Hexemer, and A. Amassian, Adv. Mater. 25, 1923 (2013).
http://dx.doi.org/10.1002/adma.201203440
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4892526
Loading
/content/aip/journal/adva/4/8/10.1063/1.4892526
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4892526
2014-08-05
2016-09-26

Abstract

The active layer crystallization during roll-to-roll coating of organic solar cells is studied . We developed an X-ray setup where the coater unit is an integrated part of the small angle X-ray scattering instrument, making it possible to control the coating process while recording scattering measurements enabling us to follow the crystal formation during drying. By varying the distance between the coating head and the point where the X-ray beam hits the film, we obtained measurements of 4 different stages of drying. For each of those stages, the scattering from as long a foil as possible is summed together, with the distance from coating head to scattering point kept constant. The results are average crystallographic properties for the active layer coated on a 30 m long foil. With this insight into the dynamics of crystallization in a roll-coated polymer film, we find that the formation of textured and untextured crystallites seems uncorrelated, and happens at widely different rates. Untextured P3HT crystallites form later in the drying process than expected which may explain previous studies speculating that untextured crystallization depends on concentration. Textured crystallites, however, begin forming much earlier and steadily increases as the film dries, showing a development similar to other studies of these materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4892526.html;jsessionid=jIiuHdmREuZhrPfZnZ6icwrr.x-aip-live-02?itemId=/content/aip/journal/adva/4/8/10.1063/1.4892526&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4892526&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4892526'
Right1,Right2,Right3,