Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4892608
1.
1. M. H. Rashid, Power electronics handbook (Academic Pr, 2001).
2.
2. A. Ioinovici, “Circuits and Systems Magazine,” IEEE 1, 37 (2001).
3.
3. Y. Diab, P. Venet, H. Gualous, and G. Rojat, “Power Electronics,” IEEE Transactions on 24, 510 (2009).
4.
4. L. Zubieta and R. Bonert, “Industry Applications,” IEEE Transactions on 36, 199 (2000).
5.
5. S. Paudyal, C. A. Canizares, and K. Bhattacharya, Industrial Electronics, IEEE Transactions on 58, 4495 (2011).
http://dx.doi.org/10.1109/TIE.2011.2112314
6.
6. J. W. Baek, J. G. Cho, G. H. Rim, and E. S. Kim (Google Patents, 1999).
7.
7. T. Noma and H. Takemura (Google Patents, 2007).
8.
8. H. Hyakutake and K. Harada, Electrical Engineering in Japan 143, 59 (2003).
http://dx.doi.org/10.1002/eej.10133
9.
9. M. Souda, F. Endo, C. Yamazaki, K. Okamura, and K. Fukushima, in Development of high power capacitor charging power supply for pulsed power applications (1999), p. 1414.
10.
10. F. MacDougall, R. Jow, J. Ennis, S. Yen, X. Yang, and J. Ho, “Pulse power capacitors,” (2008).
11.
11. J. S. Bernardes, M. F. Stumborg, and T. E. Jean, “Magnetics,” IEEE Transactions on 39, 486 (2003).
12.
12. L. Jih-Sheng, R. W. Young Sr., G. W. Ott Jr., J. W. McKeever, and P. Fang Zheng, “Industry Applications,” IEEE Transactions on 32, 518 (1996).
13.
13. L. Jih-Sheng, H. Kouns, and J. Bond, in A low-inductance DC bus capacitor for high power traction motor drive inverters (2002), p. 955.
14.
14. I. Burn and D. M. Smyth, Journal of Materials Science 7, 339 (1972).
http://dx.doi.org/10.1007/BF00555636
15.
15. G. R. Love, Journal of the American Ceramic Society 73, 323 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb06513.x
16.
16. N. H. Fletcher, A. D. Hilton, and B. W. Ricketts, Journal of Physics D: Applied Physics 29, 253 (1996).
http://dx.doi.org/10.1088/0022-3727/29/1/037
17.
17. B. Rangarajan, B. Jones, T. Shrout, and M. Lanagan, Journal of the American Ceramic Society 90, 784 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2006.01470.x
18.
18. H. Ogihara, C. A. Randall, and S. Trolier-McKinstry, Journal of the American Ceramic Society 92, 1719 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.03104.x
19.
19. G. H. Haertling, Journal of the American Ceramic Society 82, 797 (1999).
http://dx.doi.org/10.1111/j.1151-2916.1999.tb01840.x
20.
20. W. Yong, Z. Xin, C. Qin, B. Chu, and Z. Qiming, “Dielectrics and Electrical Insulation,” IEEE Transactions on 17, 1036 (2010).
21.
21. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q. Zhang, Science 313, 334 (2006).
http://dx.doi.org/10.1126/science.1127798
22.
22. S. E. Young, J. Y. Zhang, W. Hong, and X. Tan, Journal of Applied Physics 113 (2013).
http://dx.doi.org/10.1063/1.4790135
23.
23. F. Gao, X. Dong, C. Mao, W. Liu, H. Zhang, L. Yang, F. Cao, and G. Wang, Journal of the American Ceramic Society 94, 4382 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2011.04731.x
24.
24. E. J. Garboczi, Physical Review B 38, 9005 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.9005
25.
25. C. W. Tai, S. H. Choy, and H. L. W. Chan, Journal of the American Ceramic Society 91, 3335 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02592.x
26.
26. G. Viola, H. Ning, X. Wei, M. Deluca, A. Adomkevicius, J. Khaliq, M. John Reece, and H. Yan, Journal of Applied Physics 114 (2013).
http://dx.doi.org/10.1063/1.4812383
27.
27. W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H.-J. Kleebe, A. J. Bell, and J. Rödel, Journal of Applied Physics 110 (2011).
http://dx.doi.org/10.1063/1.3645054
28.
28. G. Viola, R. McKinnon, V. Koval, A. Adomkevicius, S. Dunn, and H. Yan, The Journal of Physical Chemistry C 118, 8564 (2014).
http://dx.doi.org/10.1021/jp500609h
29.
29. C. Kittel, Physical Review 82, 729 (1951).
http://dx.doi.org/10.1103/PhysRev.82.729
30.
30. E. H. Lieb, Physical Review Letters 18, 1046 (1967).
http://dx.doi.org/10.1103/PhysRevLett.18.1046
31.
31. F. Jona, G. Shirane, F. Mazzi, and R. Pepinsky, Physical Review 105, 849 (1957).
http://dx.doi.org/10.1103/PhysRev.105.849
32.
32. D. A. Berlincourt, “Transducers using forced transitions between ferroelectric and antiferroelectric states,” (1965).
33.
33. B. Jaffe, Proceedings of the IRE 49, 1264 (1961).
http://dx.doi.org/10.1109/JRPROC.1961.287917
34.
34. M. Cernea, L. Trupina, C. Dragoi, B. S. Vasile, and R. Trusca, Journal of Alloys and Compounds 515, 166 (2012).
http://dx.doi.org/10.1016/j.jallcom.2011.11.129
35.
35. Y. J. Dai, J. S. Pan, and X. W. Zhang, Key Engineering Materials 336, 206 (2007).
http://dx.doi.org/10.4028/www.scientific.net/KEM.336-338.206
36.
36. S.-T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.-J. Kleebe, and J. Rödel, Journal of Applied Physics 103 (2008).
37.
37. X. X. Wang, X. G. Tang, and H. L. W. Chan, Applied Physics Letters 85, 91 (2004).
http://dx.doi.org/10.1063/1.1767592
38.
38. S.-T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rödel, Applied Physics Letters 91 (2007).
39.
39. K. T. P. Seifert, W. Jo, and J. Rödel, Journal of the American Ceramic Society 93, 1392 (2010).
40.
40. J. E. Daniels, W. Jo, J. Rodel, V. Honkimaki, and J. L. Jones, Acta Materialia 58, 2103 (2010).
http://dx.doi.org/10.1016/j.actamat.2009.11.052
41.
41. S.-T. Zhang, Y. Feng, B. Yang, and W. Cao, Applied Physics Letters 97, 122901 (2010).
http://dx.doi.org/10.1063/1.3491839
42.
42. W. Jo, T. Granzow, E. Aulbach, J. Rödel, and D. Damjanovic, Journal of Applied Physics 105 (2009).
http://dx.doi.org/10.1063/1.3121203
43.
43. S.-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and J. Rödel, Journal of Applied Physics 103 (2008).
44.
44. X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.-J. Kleebe, and J. Rödel, Journal of Applied Physics 106 (2009).
45.
45. H. Borkar, V. Singh, M. Tomar, V. Gupta, A. Kumar, and B. Singh, RSC Advances (2014).
46.
46. I. Yoshihiro and I. Makoto, Japanese Journal of Applied Physics 37, L985 (1998).
http://dx.doi.org/10.1143/JJAP.37.L985
47.
47. M. Ahart, M. Somayazulu, R. Cohen, P. Ganesh, P. Dera, H.-k. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. Wu, Nature 451, 545 (2008).
http://dx.doi.org/10.1038/nature06459
48.
48. I. Yoshihiro and I. Makoto, Japanese Journal of Applied Physics 38, 800 (1999).
http://dx.doi.org/10.1143/JJAP.38.800
49.
49. W. D. Dong, P. Finkel, A. Amin, and C. S. Lynch, Applied Physics Letters 100, 042903 (2012).
http://dx.doi.org/10.1063/1.3679644
50.
50. J. Valadez, R. Sahul, E. Alberta, W. Hackenberger, and C. Lynch, Journal of Applied Physics 111, 024109 (2012).
http://dx.doi.org/10.1063/1.3677980
51.
51. M. Marsilius, J. Frederick, W. Hu, X. Tan, T. Granzow, and P. Han, Advanced Functional Materials 22, 797 (2012).
http://dx.doi.org/10.1002/adfm.201101301
52.
52. W. Chen and C. S. Lynch, Acta Materialia 46, 5303 (1998).
http://dx.doi.org/10.1016/S1359-6454(98)00207-9
53.
53. S. C. Hwang, C. S. Lynch, and R. M. McMeeking, Acta Metallurgica et Materialia 43, 2073 (1995).
http://dx.doi.org/10.1016/0956-7151(94)00379-V
54.
54. S. Patel, A. Chauhan, and R. Vaish, Journal of Applied Physics 115 (2014).
http://dx.doi.org/10.1063/1.4866877
55.
55. P. Satyanarayan, C. Aditya, and V. Rahul, Materials Research Express 1, 025504 (2014).
http://dx.doi.org/10.1088/2053-1591/1/2/025504
56.
56. S. Patel, A. Chauhan, and R. Vaish, Energy Technology 2, 480 (2014).
http://dx.doi.org/10.1002/ente.201300183
57.
57. X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H. J. Kleebe, and J. Rodel, Journal of Applied Physics 106, 044107 (2009).
http://dx.doi.org/10.1063/1.3207827
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4892608
Loading
/content/aip/journal/adva/4/8/10.1063/1.4892608
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4892608
2014-08-05
2016-09-27

Abstract

With the advent of modern power electronics, embedded circuits and non-conventional energy harvesting, the need for high performance capacitors is bound to become indispensible. The current state-of-art employs ferroelectric ceramics and linear dielectrics for solid state capacitance. However, lead-free ferroelectric ceramics propose to offer significant improvement in the field of electrical energy storage owing to their high discharge efficiency and energy storage density. In this regards, the authors have investigated the effects of compressive stress as a means of improving the energy storage density of lead-free ferroelectric ceramics. The energy storage density of 0.91(Bi Na )TiO-0.07BaTiO-0.02(K Na )NbO ferroelectric bulk ceramic was analyzed as a function of varying levels of compressive stress and operational temperature .It was observed that a peak energy density of 387 mJ.cm-3 was obtained at 100 MPa applied stress (25oC). While a maximum energy density of 568 mJ.cm-3 was obtained for the same stress at 80oC. These values are indicative of a significant, 25% and 84%, improvement in the value of stored energy compared to an unloaded material. Additionally, material's discharge efficiency has also been discussed as a function of operational parameters. The observed phenomenon has been explained on the basis of field induced structural transition and competitive domain switching theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4892608.html;jsessionid=I8WSr49JDrWdXe0NXdn_pib6.x-aip-live-03?itemId=/content/aip/journal/adva/4/8/10.1063/1.4892608&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4892608&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4892608'
Right1,Right2,Right3,