Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. C. Lin, C. I. Lin, Z. M. Lin, B. S. Shie, and T. Y. Huang, IEEE Trans Electron Devices 60, 1142 (2013).
2. Y.-C. Cheng, Y.-C. Wu, H.-B. Chen, M.-H. Han, N.-H. Lu, J.-J. Su, and C.-Y. Chang, Applied Physics Letters 103, 123510 (2013).
3. C. J. Su, Z. I. Tsai, H. C. Lin, T. Y. Huang, and T. S. Chao, Nanoscale Research Letters 7, 339 (2012).
4. H. B. Chen, C. Y. Chang, N. H. Lu, J. J. Wu, M. H. Han, Y. C. Cheng, and Y. C. Wu, IEEE Electron Device Lett. 34, 897 (2013).
5. J. M. Sallese, N. Chevillon, C. Lallement, B. Iñiguez, and F. Prégaldiny, IEEE Trans. Electron Devices 58, 2628 (2011).
6. Y. Taur, H. P. Chen, W. Wang, S. H. Lo, and C. Wann, IEEE Trans Electron Devices 59, 863 (2012).
7. Z. Chen, Y. Xiao, M. Tang, Y. Xiong, J. Huang, J. Li, X. Gu, and Y. Zhou, IEEE Trans Electron Devices 59, 3292 (2012).
8. M. H. Lee, K. H. Chang, and H. C. Lin, J. Appl. Phys. 102, 054508 (2007).
9. M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, Applied Physics Letters 92, 133512 (2008).
10. H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C.-C. Wu, Applied Physics Letters 92, 133503 (2008).
11. M. D. Jacunski, M. S. Shur, A. A. Owusu, T. Ytterdal, M. Hack, and B. Iñiguez, IEEE Trans. Electron Devices 46, 1146 (1999).
12. W. Deng and J. Huang, IEEE Electron Device Lett. 32, 647 (2011).
13. A. Ortiz-Conde, F. J. García Sánchez, and M. Guzmán, Solid State Electron. 47, 2067 (2003).
14. R. D. Trevisoli, R. T. Doria, M. deSouza, and M. A. Pavanello, in 2012 8th International Caribbean Conference on Devices, Circuts and Systems (ICCDCS), 2012, pp. 14.
15. J. P. Duarte, S. J. Choi, D. I. Moon, and Y. K. Choi, IEEE Electron Device Lett. 32, 704 (2011).

Data & Media loading...


Article metrics loading...



Surface potential is a key parameter in evaluating the DC property of thin-film transistors (TFTs). In this paper, for the junctionless symmetric double-gate polysilicon TFTs, a physical-based explicit calculation to surface potential has been derived. Incorporating impurity concentration, mobile charge and trap density into Poisson's equation, a closed form of band bending as a function of gate voltage is obtained and demonstrated as an accurate and computationally efficient solution. Based on surface potential, a drain current model for long-channel devices is provided in explicit forms. Furthermore, it is verified successfully by comparisons with both 2D numerical simulation and experimental data in different operation regions.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd