Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4892610
1.
1. J. Junquera and P. Ghosez, Nature (London) 422, 506 (2003).
http://dx.doi.org/10.1038/nature01501
2.
2. N. Sai, A. M. Kolpak, and A. M. Rappe, Phys. Rev. B 72, 020101(R) (2005).
http://dx.doi.org/10.1103/PhysRevB.72.020101
3.
3. G. Gerra, A. K. Tagantsev, N. Setter, and K. Parlinski, Phys. Rev. Lett. 96, 107603 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.107603
4.
4. C. G. Duan, R. F. Sabirianov, W. N. Mei, S. S. Jaswal, and E. Y. Tsymbal, Nano Lett. 6, 483 (2006).
http://dx.doi.org/10.1021/nl052452l
5.
5. M. Stengel, D. Vanderbilt, and N. A. Spaldin, Nature Mater. 8, 392 (2009).
http://dx.doi.org/10.1038/nmat2429
6.
6. Y. Wang, M. K. Niranjan, K. Janicka, J. P. Velev, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. B 82, 094114 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.094114
7.
7. W. A. Al-Saidi and A. M. Rappe, Phys. Rev. B 82, 155304 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155304
8.
8. M. Stengel, P. Aguado-Puente, N. A. Spaldin, and J. Junquera, Phys. Rev. B 83, 235112 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.235112
9.
9. X. Liu, Y. Wang, P. V. Lukashev, J. D. Burton, and E. Y. Tsymbal, Phys. Rev. B 85, 125407 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.125407
10.
10. X. Liu, Y. Wang, J. D. Burton, and E. Y. Tsymbal, Phys. Rev. B 88, 165139 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.165139
11.
11. W. J. Chen, Y. Zheng, X. Luo, B. Wang, and C. H. Woo, J. Appl. Phys. 114, 064105 (2013).
http://dx.doi.org/10.1063/1.4817656
12.
12. L. Shen, T. J. Zhou, Z. Q. Bai, M. G. Zeng, J. Q. Goh, Z. M. Yuan, G. H. Han, B. Liu, and Y. P. Feng, Phys. Rev. B 85, 064105 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.064105
13.
13. V. R. Cooper, K. Johnston, and K. M. Rabe, Phys. Rev. B 76, 020103(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.76.020103
14.
14. X. F. Wu, K. M. Rabe, and D. Vanderbilt, Phys. Rev. B 83, 020104(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.83.020104
15.
15. J. Heber, Nature 459, 28 (2009).
http://dx.doi.org/10.1038/459028a
16.
16. H. Chen and S. Ismail-Beigi, Adv. Mater. 22, 2881 (2010).
http://dx.doi.org/10.1002/adma.200903800
17.
17. H. Chen, A. M. Kolpak, and S. Ismail-Beigi, Phys. Rev. B 79, 161402(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.161402
18.
18. K. Janicka, J. P. Velev, and E. Y. Tsymbal, Phys. Rev. Lett. 102, 106803 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.106803
19.
19. M. K. Niranjan, Y. Wang, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 103, 016804 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.016804
20.
20. F. Hou, T. Y. Cai, S. Ju, and M. R. Shen, ACS Nano 6, 8552 (2012).
http://dx.doi.org/10.1021/nn303943t
21.
21. Y. Wang, X. Liu, J. D. Burton, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett. 109, 247601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.247601
22.
22. J. J. Zhu, W. W. Li, Y. W. Li, Y. D. Shen, Z. G. Hu, and J. H. Chu, Appl. Phys. Lett. 97, 211904 (2010).
http://dx.doi.org/10.1063/1.3518493
23.
23. H. Han, J. Zhong, S. Kotru, P. Padmini, X. Y. Song, and R. K. Pandey, Appl. Phys. Lett. 88, 092902 (2006).
http://dx.doi.org/10.1063/1.2180878
24.
24. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
25.
25. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
26.
26. G. Gou, I. Grinberg, A. M. Rappe, and J. M. Rondinelli, Phys. Rev. B 84, 144101 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.144101
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4892610
Loading
/content/aip/journal/adva/4/8/10.1063/1.4892610
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4892610
2014-08-06
2016-12-11

Abstract

LaNiO-BaTiO superlattices with different types of interfaces are studied from first-principles density-functional theory. It is revealed that the ferroelectricity in the superlattice with (NiO)/(BaO)0 interfaces is enhanced from that of the superlattice with (LaO)+/(TiO)0 interfaces. The origin lies at the polar discontinuity at the interface, which makes the holes localized within the (NiO)/(BaO)0 interface, but drives a penetration of electrons into BaTiO component near (LaO)+/(TiO)0 interface. Our calculations demonstrate an effective avenue to the robust ferroelectricity in BaTiO ultrathin films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4892610.html;jsessionid=JIZaI8aX2hFmEIrA8MLOlxay.x-aip-live-06?itemId=/content/aip/journal/adva/4/8/10.1063/1.4892610&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4892610&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4892610'
Right1,Right2,Right3,