Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4892855
1.
1. J. M. Tarascon and M. Armand, Nature 414, 359 (2001).
http://dx.doi.org/10.1038/35104644
2.
2. P. G. Bruce, Solid State Sci. 7, 1456 (2005).
http://dx.doi.org/10.1016/j.solidstatesciences.2005.04.018
3.
3. Z. Gadjourova, Y. G. Andreev, D. P. Tunstall, and P. G. Bruce, Nature 412, 520 (2001).
http://dx.doi.org/10.1038/35087538
4.
4. T. Itoh, Y. Miyamura, Y. Ichikawa, T. Uno, M. Kubo, O. Yamamoto, J. Power Sources 119–121, 403 (2003).
http://dx.doi.org/10.1016/S0378-7753(03)00261-1
5.
5. M. S. Whittingham, R. F. Savinell, T. Zawodzinski, Chem. Rev. 104, 4243 (2004).
http://dx.doi.org/10.1021/cr020705e
6.
6. J. H. Shin, W. A. Henderson, C. Tizzani, S. Passerini, S. S. Jeong, K. W. Kim, J. Electrochem. Soc. 153, A1649 (2006).
http://dx.doi.org/10.1149/1.2211928
7.
7. J. Xi, X. Tang, Chem. Phys. Lett. 393, 271 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.054
9.
9. Z. Stoeva, I. Martin-Litas, E. Staunton, Y. G. Andreev, P. G. Bruce, J. Am. Chem. Soc. 125, 4619 (2003).
http://dx.doi.org/10.1021/ja029326t
10.
10. F. B. Dias, L. Plomp, J. B. J. Veldhuis, J. Power Sources 88, 169 (2000).
http://dx.doi.org/10.1016/S0378-7753(99)00529-7
11.
11. R. Frech, S. Chintapalli, Solid State Ionics 85, 61 (1996).
http://dx.doi.org/10.1016/0167-2738(96)00041-0
12.
12. Y. T. Kim, E. S. Smotkin, Solid State Ionics 149, 29 (2002).
http://dx.doi.org/10.1016/S0167-2738(02)00130-3
13.
13. F. Croce, G. B. Appetecchi, L. Persi, B. Scrosati, Nature 394, 456 (1998).
http://dx.doi.org/10.1038/28818
14.
14. F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, R. Caminiti, J. Phys. Chem. B 103, 10632 (1999).
http://dx.doi.org/10.1021/jp992307u
15.
15. F. Croce, L. L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. A. Hendrickson, Electrochim. Acta 46, 2457 (2001).
http://dx.doi.org/10.1016/S0013-4686(01)00458-3
16.
16. R. Ribeiro, G. Goulart Silva, N. D. S. Mohallem, Electrochim. Acta 46, 1679 (2001).
http://dx.doi.org/10.1016/S0013-4686(00)00770-2
17.
17. B. Scrosati, F. Croce, L. Persi, J. Electrochem. Soc. 147, 1718 (2000).
http://dx.doi.org/10.1149/1.1393423
18.
18. C. W. Nan, L. Fan, Y. Lin, Q. Cai, Phys. Rev. Lett. 91, 2661041 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.266104
19.
19. B. Singh, S. S. Sekhon, Chem. Phys. Lett. 414, 34 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.08.046
20.
20. M. Galiński, A. Lewandowski, I. Stepniak, Electrochim. Acta 51, 5567 (2006).
http://dx.doi.org/10.1016/j.electacta.2006.03.016
21.
21. J. Reiter, J. Vondrák, J. Michálek, Z. Mička, Electrochim. Acta 52, 1398 (2006).
http://dx.doi.org/10.1016/j.electacta.2006.07.043
22.
22. G. B. Appetecchi, G. T. Kim, M. Montanino, F. Alessandrini, S. Passerini, J. Power Sources 196, 6703 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2010.11.070
23.
23. J. H. Shin, W. A. Henderson, S. Passerini, J. Electrochem. Soc. 152, A978 (2005).
http://dx.doi.org/10.1149/1.1890701
24.
24. S. Fang, Z. Zhang, Y. Jin, L. Yang, S. I. Hirano, K. Tachibana, S. Katayama, J. Power Sources 196, 5637 (2011).
http://dx.doi.org/10.1016/j.jpowsour.2011.02.047
25.
25. A. Triolo, O. Russina, B. Fazio, G. B. Appetecchi, M. Carewska, S. Passerini, J. Chem. Phys. 130, 164521 (2009).
http://dx.doi.org/10.1063/1.3119977
26.
26. H. Ohno, M. Yoshizawa, W. Ogihara, Electrochim. Acta 48, 2079 (2003).
http://dx.doi.org/10.1016/S0013-4686(03)00188-9
27.
27. C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud, Solid State Ionics 11, 91 (1983).
http://dx.doi.org/10.1016/0167-2738(83)90068-1
28.
28. M. Marcinek, M. Ciosek, G. Zukowska, W. Wieczorek, K. R. Jeffrey, J. R. Stevens, Solid State Ionics 176, 367 (2005).
http://dx.doi.org/10.1016/j.ssi.2004.08.013
29.
29. R. Frech, S. York, H. Allcock, C. Kellam, Macromolecules 37, 8699 (2004).
http://dx.doi.org/10.1021/ma040067x
30.
30. A. Bac, M. Ciosek, M. Bukat, M. Siekierski, W. Wieczorek, J. Power Sources 159, 438 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2006.02.039
31.
31. A. Karmakar, A. Ghosh, J. Appl. Phys. 107, 104113 (2010).
http://dx.doi.org/10.1063/1.3428389
32.
32. R. M. Hodge, G. H. Edward, G. P. Simon, Polymer 37, 1371 (1996).
http://dx.doi.org/10.1016/0032-3861(96)81134-7
33.
33. C. P. Rhodes, R. Frech, Macromolecules 34, 2660 (2001).
http://dx.doi.org/10.1021/ma001749x
34.
34. P. W. M. Jacobs, J. W. Lorimer, A. Russer, M. Wasiucionek, J. Power Sources 26, 503 (1989).
http://dx.doi.org/10.1016/0378-7753(89)80170-3
35.
35. A. K. Sircar, P. T. Weissman, B. Kumar, R. A. Marsh, Thermochim. Acta 226, 281 (1993).
http://dx.doi.org/10.1016/0040-6031(93)80230-8
36.
36. X. Li, S. L. Hsu, J. Polym. Sci.: Polym. Phys. Ed. 22, 1331 (1984).
http://dx.doi.org/10.1002/pol.1984.180220715
37.
37. J.-W. Choi, G. Cheruvally, Y.-H. Kim, J.-K. Kim, J. Manuel, P. Raghavan, J.-H. Ahn, K.-W. Kim, H.-J. Ahn, D. S. Choi, C. E. Song, Solid State Ionics 178, 1235 (2007).
http://dx.doi.org/10.1016/j.ssi.2007.06.006
38.
38. J. Xi, X. Qiu, X. Ma, M. Cui, J. Yang, X. Tang, W. Zhu, L. Chen, Solid State Ionics 176, 1249 (2005).
http://dx.doi.org/10.1016/j.ssi.2005.02.016
39.
39. S. Chintapalli, C. Quinton, R. Frech, C. A. Vincent, Macromolecules 30, 7472 (1997).
http://dx.doi.org/10.1021/ma9705376
40.
40. R. Frech, S. Chintapalli, P. G. Bruce, C. A. Vincent, Macromolecules 32, 808 (1999).
http://dx.doi.org/10.1021/ma9812682
41.
41. J. M. Alía, Díaz, Y. de Mera, H. G. M. Edwards, F. J. García, E. E. Lawson, J. Mol. Struct. 408–409, 439 (1997).
42.
42. W. Huang, R. Frech, Polymer 35, 235 (1994).
http://dx.doi.org/10.1016/0032-3861(94)90684-X
43.
43. S. C. Nunes, V. de Zea Bermudez, D. Ostrovskii, N. V. Martins, J. Mol. Struct. 879, 72 (2008).
http://dx.doi.org/10.1016/j.molstruc.2007.08.009
44.
44. M. C. Gonalves, I. C. Fernandes, J. Hümmer, V. De Zea Bermudez, Vib. Spectrosc. 57, 187 (2011).
http://dx.doi.org/10.1016/j.vibspec.2011.07.004
45.
45. C. Zhang, S. Gamble, D. Ainsworth, A. M. Z. Slawin, Y. G. Andreev, P. G. Bruce, Nature Materials 8, 580 (2009).
http://dx.doi.org/10.1038/nmat2474
46.
46. P. S. Anantha, K. Hariharan, Solid State Ionics 176, 155 (2005).
http://dx.doi.org/10.1016/j.ssi.2004.07.006
47.
47. S. A. Hashmi, S. Chandra, Mater. Sci. Eng. B 34, 18 (1995).
http://dx.doi.org/10.1016/0921-5107(95)01219-2
48.
48. N. Srivastava, A. Chandra, S. Chandra, Phys. Rev. B 52, 225 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.225
49.
49. H. Vogel, Z. Phys. 22, 645 (1921).
50.
50. G. Tamman, W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926).
http://dx.doi.org/10.1002/zaac.19261560121
51.
51. G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).
http://dx.doi.org/10.1111/j.1151-2916.1925.tb16731.x
52.
52. B. Natesan, N. K. Karan, R. S. Katiyar, Phys. Rev. E 74, 042801 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.042801
53.
53. P.-L. Kuo, W.-J. Liang, T.-Y. Chen, Polymer 44, 2957 (2003).
http://dx.doi.org/10.1016/S0032-3861(03)00189-7
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4892855
Loading
/content/aip/journal/adva/4/8/10.1063/1.4892855
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4892855
2014-08-08
2016-12-05

Abstract

In this paper we have reported electrical and other physical properties of polyethylene oxide (PEO) - LiCFSO polymer electrolytes embedded with 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid. The addition of the ionic liquid to PEO- LiCFSO electrolyte increases the amorphous phase content considerably and decreases the glass transition temperature. The relative amounts of different ionic species present in these electrolytes have been determined. It is observed that the fraction of free anions increase with the increase of ionic liquid concentration, whereas the fraction for ion pairs and aggregates show a decreasing trend under the same condition. The ionic conductivity of the PEO- LiCFSO polymer electrolyte embedded with ionic liquid is higher than that of the PEO- LiCFSO electrolyte. The ionic conductivity shows a transition around 323 K. The ionic conductivity above 323 K exhibits Arrhenius behavior with an activation energy, which decreases with the increase of ionic liquid concentration. However, below 323 K the conductivity shows Vogel–Tamman–Fulcher (VTF) type behavior.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4892855.html;jsessionid=R3MUo4BmVnn3PHbl2LyDwQlh.x-aip-live-06?itemId=/content/aip/journal/adva/4/8/10.1063/1.4892855&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4892855&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4892855'
Right1,Right2,Right3,