1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Dielectric and AC-conductivity studies of Dy2O3 doped (K0.5Na0.5)NbO3 ceramics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/8/10.1063/1.4892856
1.
1. E. Buixaderas, V. Bovtun, M. Kempa, M. Savinov, D. Nuzhnyy, F. Kadlec, P. Vank, J. Petzelt, M. Eriksson, and Z. Shen, J. Appl. Phys. 107, 014111 (2010).
http://dx.doi.org/10.1063/1.3273490
2.
2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, Nature 432, 84 (2004).
http://dx.doi.org/10.1038/nature03028
3.
3. G. Shirane, R. Newnham, and R. Pepinsky, Phys. Rev. 96, 581 (1954).
http://dx.doi.org/10.1103/PhysRev.96.581
4.
4. H. Birol, D. Damjanovic, and N. Setter, J. Eur. Ceram. Soc. 26, 861 (2006).
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.11.022
5.
5. S. Zhang, R. Xia, and T. R. Shrout, J. Electroceram. 19, 251 (2007).
http://dx.doi.org/10.1007/s10832-007-9056-z
6.
6. I. Aulika, V. Zauls, K. Kundzins, M. Kundzins, and S. Katholy, J. Optoelectr. Adv. Mater. 5, 755 (2003).
7.
7. S. T. Lau, C. H. Cheng, S. H. Choy, D. M. Lin, K. W. Kwok, and H. L. W. Chan, J. Appl. Phys. 103, 104105 (2008).
http://dx.doi.org/10.1063/1.2927252
8.
8. V. Manglani and A. Agnihotri, Int. J. Rec. Res. Rev. 1, 16 (2012).
9.
9. S.-Y. Chu, W. Water, Y.-D. Juang, J.-T. Liaw, and S. B. Dai, Ferroelectrics 297, 11 (2003).
http://dx.doi.org/10.1080/713642469
10.
10. P. Dubernet and J. Ravez, Ferroelectrics 211, 51 (1998).
http://dx.doi.org/10.1080/00150199808232333
11.
11. J. Minhong, D. Manjiao, L. Huaxin, W. Shi, and L. Xinyu, Mater. Sci. Eng. B, 176, 167 (2011).
http://dx.doi.org/10.1016/j.mseb.2010.10.007
12.
12. Z. Wang, Y. Zhuo, D. Xiao, W. Wu, C. Zhang, X. Huang, and J. Zhu, Curr. Appl. Phys. 11, S143 (2011).
http://dx.doi.org/10.1016/j.cap.2010.12.033
13.
13. D. Gao, K. W. Kwok, D. Lin, and H. L. W. Chan, J. Mater. Sci. 44, 2466 (2009).
http://dx.doi.org/10.1007/s10853-009-3314-1
14.
14. S. Bagdzevicius, J. Banys, R. Grigalaitis, A. Sternberg, and K. Bormanis, Ferroelectrics 428, 14 (2012).
http://dx.doi.org/10.1080/00150193.2012.675261
15.
15. M. Dambekalne, M. Antonova, M. Livinsh, A. Kalvane, A. Mishnov, I. Smeltere, R. Krutokhivostav, K. Bormans, and A. Sternberg, Integr. Ferroelectr. 102, 52 (2008).
http://dx.doi.org/10.1080/10584580802558043
16.
16. D. Lin, K. W. Kwok, H. Tian, H. Wong, and L.-W. Chan, J. Am. Ceram. Soc. 90, 1458 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2007.01627.x
17.
17. K. Wang and J.-F. Li, Appl. Phys. Lett. 91, 262902 (2007).
http://dx.doi.org/10.1063/1.2825280
18.
18. Y. Dai, X. Zhang, and G. Zhou, Appl. Phys. Lett. 90, 262903 (2007).
http://dx.doi.org/10.1063/1.2751607
19.
19. J. Tellier, B. Malic, B. Dkhil, D. Jenko, J. Cilensek, and M. Kosec, Solid State Sci. 11, 320 (2009).
http://dx.doi.org/10.1016/j.solidstatesciences.2008.07.011
20.
20. A. A. Bokov and Z.-G. Ye, J. Mater. Sci. 41, 31 (2006).
http://dx.doi.org/10.1007/s10853-005-5915-7
21.
21. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, and Z. Pei, J. Appl. Phys. 105, 124104 (2009).
http://dx.doi.org/10.1063/1.3153128
22.
22. V. Bobnar, J. Holc, M. Hrovat, and M. Kosec, J. Appl. Phys. 101, 074103 (2007).
http://dx.doi.org/10.1063/1.2717090
23.
23. H. Yu and Z.-G. Ye, J. Appl. Phys. 103, 034114 (2008).
http://dx.doi.org/10.1063/1.2838479
24.
24. P. Fu, Z. Xu, R. Chu, W. Li, Q. Xie, Y. Zhang, and Q. Chen, J. Alloys Compd. 508, 546 (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.08.117
25.
25. H. Cheng, W. Zhou, H. Du, F. Luo, D. Zhu, D. Jiang, and B. Zhu, J. Alloys Compd. 579, 192 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.06.077
26.
26. H. Du, W. Zhou, D. Zhu, L. Fa, S. Qu, Y. Li, and Z. Pei, J. Am. Ceram. Soc. 91, 2903 (2008).
http://dx.doi.org/10.1111/j.1551-2916.2008.02528.x
27.
27. S. Xiao, S. Deng, J. Zhang, Y. Zhou, J. Tang, Y. Wang, L. Wang, H. Qi, and J. Wang, Ceram. Int. 38, 6071 (2012).
http://dx.doi.org/10.1016/j.ceramint.2012.04.054
28.
28. V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).
http://dx.doi.org/10.1111/j.1551-2916.2011.04952.x
29.
29. J. Ryu, S. Priya, and K. Uchino, Appl. Phys. Lett. 82, 251 (2003).
http://dx.doi.org/10.1063/1.1536028
30.
30. L. E. Cross, Ferroelectrics 151, 305 (1994).
http://dx.doi.org/10.1080/00150199408244755
31.
31. L. E. Cross, Ferroelectrics 76, 241 (1987).
http://dx.doi.org/10.1080/00150198708016945
32.
32. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, and Z. Pei, Ferroelectrics 401, 141 (2010).
http://dx.doi.org/10.1080/00150191003673881
33.
33. G. H. Jonker, Mater. Res. Bull. 18, 301 (1983).
http://dx.doi.org/10.1016/0025-5408(83)90117-4
34.
34. K. Uchino and S. Nomura, Ferroelectrics 44, 55 (1982).
http://dx.doi.org/10.1080/00150198208260644
35.
35. X. Diez-Betriu, J. E. Garcia, C. Ostos, A. U. Boya, D. A. Ochoa, L. Mestres, and R. Perez, Mater. Chem. Phys. 125, 493 (2011).
36.
36. D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, J. Appl. Phys. 68(6), p. 2916 (1990).
http://dx.doi.org/10.1063/1.346425
37.
37. X. Long and Z.-G. Ye, Appl. Phys. Lett. 90, 112905 (2007).
http://dx.doi.org/10.1063/1.2713236
38.
38. R. Pirc and R. Blinc, Phys. Rev. B 76, 020101(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.76.020101
39.
39. V. Bobnar, J. Bernard, and M. Kosec, Appl. Phys. Lett. 85, 994 (2004).
http://dx.doi.org/10.1063/1.1779947
40.
40. A. K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, and K. Prasad, ISRN Ceram. 2012, 1 (2012).
http://dx.doi.org/10.5402/2012/854831
41.
41. F. A. Kröger and H. J. Vink, Solid State Physics (Academic Press, New York, 1956), Vol. 3, p. 307.
42.
42. R. M. Hill, Phys. Stat. Sol. (a) 34, 601 (1976).
http://dx.doi.org/10.1002/pssa.2210340223
43.
43. J. Hauser, Phys. Rev. B 9, 2623 (1974).
http://dx.doi.org/10.1103/PhysRevB.9.2623
44.
44. S. Upadhyay, O. Parkash, and D. Kumar, J. Electroceram. 18, 45 (2007).
http://dx.doi.org/10.1007/s10832-007-9007-8
45.
45. S. Ke, P. Lin, H. Fan, H. Huang, and X. Zeng, J. Appl. Phys. 114, 104106 (2013).
http://dx.doi.org/10.1063/1.4821042
46.
46. I. Rawal and A. Kaur, J. Appl. Phys. 115, 043717 (2014).
http://dx.doi.org/10.1063/1.4863179
47.
47. S. Upadhyay, O. Parkash, and D. Kumar, J. Phys. D: Appl. Phys. 37, 1483 (2004).
http://dx.doi.org/10.1088/0022-3727/37/10/011
48.
48. S. De, S. Niranjana, B. S. Satyanarayana, and M. Rao, J. Optoelectron. Adv. Mater. Rapid Commun. 3, 1365 (2009).
49.
49. V. Ambegaokar, B. Halperin, and J. Langer, Phys. Rev. B 4, 2612 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.2612
50.
50. Z.-H. Chen, I.-N. Ding, L. Mei, N.-Y. Yuan, and W.-W. Zhang, Ferroelectrics 425, 63 (2011).
http://dx.doi.org/10.1080/00150193.2011.634752
51.
51. F. M. Pontes, E. R. Leite, E. Longo, J. A. Varela, E. B. Araujo, and J. A. Eiras, Appl. Phys. Lett. 76, 2433 (2000).
http://dx.doi.org/10.1063/1.126367
52.
52. X. Chou, J. Zhai, H. Jiang, and X. Yao, J. Appl. Phys. 102, 084106 (2007).
http://dx.doi.org/10.1063/1.2799081
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4892856
Loading
/content/aip/journal/adva/4/8/10.1063/1.4892856
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4892856
2014-08-08
2014-09-16

Abstract

(K Na )NbO + wt.% DyO ( = 0–1.5) ferroelectric ceramics were prepared by conventional solid state reaction method. XRD patterns revealed that orthorhombic symmetry has transformed into psuedocubic symmetry with increasing the substitution of Dy3+ in the Na + site. Temperature and frequency dependences of relative dielectric permittivity maximum conforms the transformation from normal ferroelectric to relaxor ferroelectric behaviour. Frequency dependence of the relative dielectric permittivity maximum temperature observed for the samples with ≥ 1.0 and satisfied the Vogel–Fulcher law. The diffuseness exponent γ (1.27–1.95) estimated from the high temperature slopes of the diffused dielectric permittivity data reveals that the degree of relaxor behavior increases with increasing the amount of DyO. The temperature dependence of AC-conductivity σ (T) analysis in the range 310 K < T < 470 K reveals the existence of variable range hopping of charge carriers with average hopping length R and hopping energy E are in the range 8.5–27 Å and 48–153 meV, respectively. Voltage dependent dielectric constant measurements confirm the ferroelectric nature of KNN+ wt% DyO ceramics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4892856.html;jsessionid=gn2gg5hbkgj8.x-aip-live-02?itemId=/content/aip/journal/adva/4/8/10.1063/1.4892856&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dielectric and AC-conductivity studies of Dy2O3 doped (K0.5Na0.5)NbO3 ceramics
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4892856
10.1063/1.4892856
SEARCH_EXPAND_ITEM