Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4892857
1.
1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001).
http://dx.doi.org/10.1063/1.1361065
2.
2. J. Aarik, A. Aidla, A. A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films 340, 110 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01356-X
3.
3. M. Ritala, M. Leskela, L. Niinisto, T. Prohaska, G. Friedbacher, and M. Grasserbauer, Thin Solid Films 250,72 (1994).
http://dx.doi.org/10.1016/0040-6090(94)90168-6
4.
4. K. Kukli, J. Ihanus, M. Ritala, and M. Leskela, Appl. Phys. Lett. 68, 3737 (1996).
http://dx.doi.org/10.1063/1.115990
5.
5. D. H. Triyoso, R. I. Hegde, J. K. Schaeffer, D. Roan, P. J. Tobin, S. B. Samavedam, B. E. White, R. Gregory, and X. D. Wang, Appl. Phys. Lett. 88, 222901 (2006).
http://dx.doi.org/10.1063/1.2208558
6.
6. Y. Senzaki, S. Park, H. Chatham, L. Bartholomew, and W. Nieveen, J. Vac. Sci. and Tech. A 22, 1175 (2004).
http://dx.doi.org/10.1116/1.1761186
7.
7. J. J. Gallegos III, D. H. Triyoso, and M. Raymond, Microelectronic Engineering 85, 49 (2008).
http://dx.doi.org/10.1016/j.mee.2007.02.013
8.
8. J. Adam and M. D. Rogers, Acta Crystallogr. 12, 951 (1959).
http://dx.doi.org/10.1107/S0365110X59002742
9.
9. R. I. Hegde, D. H. Triyoso, S. B. Samavedam, and B. E. White Jr., J. Appl. Phys. 101, 074113 (2007).
http://dx.doi.org/10.1063/1.2716399
10.
10. D. H. Triyoso, R. I. Hegde, J. Jiang, J. K. Schaeffer, and M. V. Raymond, IEEE Electron Device Letter 29, 57 (2008).
http://dx.doi.org/10.1109/LED.2007.911979
11.
11. T. S. Boscke, P. Y. Hung, P. D. Kirsch, M. A. Quevedo-Lopez, and R. Ramirez-bon, Appl. Phys. Lett. 95, 052904 (2009).
http://dx.doi.org/10.1063/1.3195623
12.
12. C. K. Chiang, C. H. Wu, C. C. Liu, J. F. Lin, C. L. Yang, J. Y. Wu, and S. J. Wang, Jpn. J. Appl. Phys. 51, 011101 (2012).
13.
13. R. Vasic, S. Consiglio, R. D. Clark, K. Tapily, S. Sallis, B. Chen, D. Newby, M. Medikonda, G. R. Muthinti, and E. Bersch, J. Appl. Phys. 113, 234101 (2013).
http://dx.doi.org/10.1063/1.4811446
14.
14. R. Sayama, H. Takubo, and S. Kume, Journal of the American Ceramic Society 68, C237 (1985).
15.
15. G. Dutta, J. Appl. Phys. 105, 106103 (2009).
http://dx.doi.org/10.1063/1.3117829
16.
16. J. Koo, Y. Kim, and H. Jeon, Jpn. J. Appl. Phys. 41, 3043 (2002).
http://dx.doi.org/10.1143/JJAP.41.3043
17.
17. K. Xiong, J. Robertson, M. C. Gibson, and S. J. Clark, Appl. Phys. Lett. 87, 183505 (2005).
http://dx.doi.org/10.1063/1.2119425
18.
18. H. Takeuchi, D. Ha, and T. J. King, J. Vac. Sci. Technol. A 22, 1337 (2004).
http://dx.doi.org/10.1116/1.1705593
19.
19. K. McKenna and A. Shluger, Appl. Phys. Lett. 95, 222111 (2009).
http://dx.doi.org/10.1063/1.3271184
20.
20. X. X. Lan, X. Ou, Y. Q. Cao, S. Y. Tang, C. J. Gong, B. Xu, Y. D. Xia, J. Yin, A. D. Li, F. Yan, and Z. G. Liu, J. Appl. Phys. 114, 044104 (2013).
http://dx.doi.org/10.1063/1.4816463
21.
21. Y. N. Tan, W. K. Chim, B. J. Cho, and W. K. Choi, IEEE Transactions on Electron Devices 51, 1143 (2004).
http://dx.doi.org/10.1109/TED.2004.829861
22.
22. D. Munoz Ramo, J. L. Gavartin, A. L. Shluger, and G. Bersuker, Phys. Rev. B 75, 205336 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.205336
23.
23. P. Broqvist and A. Pasquarello, Appl. Phys. Lett. 89, 262904 (2006).
http://dx.doi.org/10.1063/1.2424441
24.
24. P. D. Krisch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, J. Appl. Phys. 91, 4353 (2002).
http://dx.doi.org/10.1063/1.1455155
25.
25. J. H. Kim, T. J. Park, S. K. Kim, D. Y. Cho, H. S. Jung, S. Y. Lee, and C. S. Hwang, Appl. Surf. Sci. 292, 852 (2014).
26.
26. O. Renault, D. Samour, J. F. Damlencourt, D. Blin, F. Martin, and S. Marthon, Appl. Phys. Lett. 81, 3627 (2002).
http://dx.doi.org/10.1063/1.1520334
27.
27. T. J. Park, J. H. Kim, K. D. Na, and C. S. Hwang, Electrochem. Solid-state Lett. 11, H121 (2008).
http://dx.doi.org/10.1149/1.2844717
28.
28. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000).
http://dx.doi.org/10.1063/1.371888
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4892857
Loading
/content/aip/journal/adva/4/8/10.1063/1.4892857
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4892857
2014-08-08
2016-10-01

Abstract

A memory structure Pt/AlO/HfZrO/AlO/p-Si was fabricated by using atomic layer deposition and rf-magnetron sputtering techniques, and its microstructure has been investigated by using the high resolution transmission electron microscopy (HRTEM). By measuring the applied gate voltage dependence of the capacitance for the memory structure, the planar density of the trapped charges in HfZrO high-k film was estimated as 6.63 × 1012 cm−2, indicating a body defect density of larger than 2.21 × 1019 cm−3. It is observed that the post-annealing in N can reduces the defect density in HfZrO film, which was ascribed to the occupancy of oxygen vacancies by nitrogen atoms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4892857.html;jsessionid=O--UsUvD54NryG3Kou_CQZih.x-aip-live-06?itemId=/content/aip/journal/adva/4/8/10.1063/1.4892857&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4892857&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4892857'
Right1,Right2,Right3,