Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4892956
1.
1. P. D. Padova, C. Quaresima, C. Ottaviani, P. M. Sheverdyaeva, P. Moras, C. Carbone, D. Topwal, B. Olivieri, A. Kara, H. Oughaddou, B. Aufray, and G. L. Lay, Appl. Phys. Lett. 96, 261905 (2010).
http://dx.doi.org/10.1063/1.3459143
2.
2. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, and G. Le Lay, Appl. Phys. Lett. 96, 183102 (2010).
http://dx.doi.org/10.1063/1.3419932
3.
3. B. J. Feng, Z. J. Ding, S. Meng, Y. G. Yao, X. Y. He, P. Cheng, L. Chen, and K. H. Wu, Nano Lett. 12, 3507 (2012).
http://dx.doi.org/10.1021/nl301047g
4.
4. L. Chen, C. C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, and K. Wu, Phys. Rev. Lett. 109, 056804 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.056804
5.
5. C. C. Liu, H. Jiang, and Y. Yao, Phys. Rev. Lett. 107, 076802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.076802
6.
6. M. Topsakal and S. Ciraci, Phys. Rev. B 81, 024107 (2011).
http://dx.doi.org/10.1103/PhysRevB.81.024107
7.
7. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.055502
8.
8. Y. Ding and Y. L. Wang, Appl. Phys. Lett. 102, 143115 (2013).
http://dx.doi.org/10.1063/1.4801948
9.
9. J. Kang, F. Wu, and J. B. Li, Appl. Phys. Lett. 100, 233122 (2012).
http://dx.doi.org/10.1063/1.4726276
10.
10. L. Pan, H. J. Liu, X. J. Tan, H. Y. Lv, J. Shi, X. F. Tang, and G. Zeng, Phys. Chem. Chem. Phys. 14, 13588 (2012).
http://dx.doi.org/10.1039/c2cp42645e
11.
11. K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands, S. Maekawa, and E. Saitoh, Nature Mater. 10, 737 (2011).
http://dx.doi.org/10.1038/nmat3099
12.
12. H. Adachi, J. Ohe, S. Takahashi, and S. Maekawa, Phys. Rev. B 83, 094410 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.094410
13.
13. C. M. Jaworski, R. C. Myers, E. Johnston-Halperin, and J. P. Heremans, Nature (London) 487, 210 (2012).
http://dx.doi.org/10.1038/nature11221
14.
14. M. Weiler, M. Althammer, F. D. Czeschka, H. Huebl, M. S. Wagner, M. Opel, I. M. Imort, G. Reiss, A. Thomas, R. Gross, and T. B. Goennenwein, Phys. Rev. Lett. 108, 106602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.106602
15.
15. K. Uchida, T. Nonaka, T. Kikkawa, Y. Kajiwara, and E. Saitoh, Phys. Rev. B 87, 104412 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.104412
16.
16. X. F. Yang, Y. S. Liu, X. Zhang, L. P. Zhou, X. F. Wang, F. Chi, and J. F. Feng, Phys. Chem. Chem. Phys. 16, 11349 (2014).
http://dx.doi.org/10.1039/c4cp00390j
17.
17. Y. S. Liu, X. Zhang, J. F. Feng, and X. F. Wang, Appl. Phys. Lett. 104, 242412 (2014).
http://dx.doi.org/10.1063/1.4884424
18.
18. M. G. Zeng, W. Huang, and G. C. Liang, Nanoscale 5, 200 (2013).
http://dx.doi.org/10.1039/c2nr32226a
19.
19. Y. S. Liu, X. F. Wang, and F. Chi, J. Mater. Chem. C 1, 8046 (2013).
http://dx.doi.org/10.1039/c3tc31537a
20.
20. K. Zberecki, R. Swirkowicz, and J. Baranaś, Phys. Rev. B 89, 165419 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.165419
21.
21. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
22.
22. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
23.
23. Y. S. Liu, X. F. Yang, F. Chi, M. S. Si, and Y. Guo, Appl. Phys. Lett. 101, 213109 (2012).
http://dx.doi.org/10.1063/1.4764557
24.
24. J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245407
25.
25.Atomistix ToolKit : Manual, Version 2008. 10.
26.
26. R. Świrkowicz, M. Wierzbicki, and J. Barnaś, Phys. Rev. B 80, 195409 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.195409
27.
27. Y. Dubi and M. Di Ventra, Phys. Rev. B 79, 081302(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.081302
28.
28. M. Paulsson and S. Datta, Phys. Rev. B 67, 241403(R) (2003).
http://dx.doi.org/10.1103/PhysRevB.67.241403
29.
29. X. F. Yang and Y. S. Liu, J. Appl. Phys. 113, 164310 (2013).
http://dx.doi.org/10.1063/1.4803133
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4892956
Loading
/content/aip/journal/adva/4/8/10.1063/1.4892956
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4892956
2014-08-11
2016-09-27

Abstract

Using the first-principles methods, we investigate the thermospin properties of a two-probe model based on zigzag-edge silicene nanoribbons (ZSiNRs). Compared with the odd-width ZSiNRs, the spin Seebeck coefficient of the even-width ZSiNRs is obviously enhanced at room temperature. This fact is attributed to a nearly perfect symmetry of the linear conductance gap with the different spin index with respect to the Fermi level induced by the different parity of the wave functions. More interestingly, the corresponding charge Seebeck coefficient is near zero. Therefore, when a thermal bias is presented in the even-width ZSiNRs, a nearly pure spin current is achieved. Meanwhile, the spin polarization of the current approaches infinite.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4892956.html;jsessionid=10cK9aKb7aFVdFyfAyFZD_fn.x-aip-live-06?itemId=/content/aip/journal/adva/4/8/10.1063/1.4892956&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4892956&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4892956'
Right1,Right2,Right3,