Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4893238
1.
1. R. Ugarte, R. Schrebler, R. Cordova, E. A. Dalchiele, and H. Gomez, Thin Solid Films 340(1–2), 117124 (1999).
http://dx.doi.org/10.1016/S0040-6090(98)01361-3
2.
2. P. T. Erslev, J. Lee, G. M. Hanket, W. N. Shafarman, and J. D. Cohen, Thin Solid Films 519(21), 72967299 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.368
3.
3. A. M. Fernandez and R. N. Bhattacharya, Thin Solid Films 474(1–2), 1013 (2005).
http://dx.doi.org/10.1016/j.tsf.2004.02.104
4.
4. R. N. Bhattacharya, W. Batchelor, J. E. Granata, F. Hasoon, H. Wiesner, K. Ramanathan, J. Keane, and R. N. Noufi, Sol Energ Mat Sol C 55(1–2), 8394 (1998).
http://dx.doi.org/10.1016/S0927-0248(98)00049-X
5.
5. A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, and A. M. Hermann, Applied Physics Letters 65(2), 198200 (1994).
http://dx.doi.org/10.1063/1.112670
6.
6. S. H. Wei, S. B. Zhang, and A. Zunger, Applied Physics Letters 72(24), 31993201 (1998).
http://dx.doi.org/10.1063/1.121548
7.
7. D. S. Albin, J. J. Carapella, J. R. Tuttle, and R. Noufi, Mater. Res. Soc. Symp. Proc. 228, 267 (1992).
http://dx.doi.org/10.1557/PROC-228-267
8.
8. S. H. Wei and A. Zunger, Journal of Applied Physics 78(6), 38463856 (1995).
http://dx.doi.org/10.1063/1.359901
9.
9. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J Phys-Condens Mat 14(11), 27172744 (2002).
10.
10. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J Phys Chem-Us 98(45), 1162311627 (1994).
11.
11. C. T. Lee, W. T. Yang, and R. G. Parr, Physical Review B 37(2), 785789 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
12.
12. A. D. Becke, J Chem Phys 98(2), 13721377 (1993).
http://dx.doi.org/10.1063/1.464304
13.
13. J. P. Perdew and A. Zunger, Physical Review B 23(10), 50485079 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
14.
14. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys Rev Lett 77(18), 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
15.
15. D. M. Ceperley and B. J. Alder, Phys Rev Lett 45(7), 566569 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
16.
16. J. P. Perdew and M. Levy, Phys Rev Lett 51(20), 18841887 (1983).
http://dx.doi.org/10.1103/PhysRevLett.51.1884
17.
17. M. Chandramohan, S. Velumani, and T. Venkatachalam, Materials Science and Engineering: B 174(1–3), 200204 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.03.043
18.
18. M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, A. K. Nandakumar, and N. Muthukumarasamy, Sol Energ Mat Sol C 92(5), 571575 (2008).
http://dx.doi.org/10.1016/j.solmat.2007.12.007
19.
19. J. M. Merino, J. L. M. deVidales, S. Mahanty, R. Diaz, F. Rueda, and M. Leon, Journal of Applied Physics 80(10), 56105616 (1996).
http://dx.doi.org/10.1063/1.363611
20.
20. C. M. Xu, Y. Sun, F. Y. Li, L. Zhang, Y. M. Xue, Q. He, and H. T. Liu, Chinese Phys 16(3), 788794 (2007).
http://dx.doi.org/10.1088/1009-1963/16/3/038
21.
21. S. Shirakata, S. Chichibu, and S. Isomura, Jpn J Appl Phys 1 36(12A), 71607161 (1997).
http://dx.doi.org/10.1143/JJAP.36.7160
22.
22. J. L. Shay, B. Tell, H. M. Kasper, and Schiavon. Lm, Physical Review B 7(10), 44854490 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.4485
23.
23. H. Xiao, J. Tahir-Kheli, and W. A. Goddard, J Phys Chem Lett 2(3), 212217 (2011).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893238
Loading
/content/aip/journal/adva/4/8/10.1063/1.4893238
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4893238
2014-08-13
2016-09-28

Abstract

Cu(InGa)Se (CIGS) alloy based thin film photovoltaic solar cells have attracted more and more attention due to its large optical absorption coefficient, long term stability, low cost and high efficiency. However, the previous theoretical investigation of this material with first principle calculation cannot fulfill the requirement of experimental development, especially the accurate description of band structure and density of states. In this work, we use first principle calculation based on hybrid density functional theory to investigate the feature of CIGS, with B3LYP applied in the CuInGaSe stimulation of the band structure and density of states. We report the simulation of the lattice parameter, band gap and chemical composition. The band gaps of CuGaSe, CuInGaSe, CuInGaSe, CuInGaSe and CuInSe are obtained as 1.568 eV, 1.445 eV, 1.416 eV, 1.275 eV and 1.205 eV according to our calculation, which agree well with the available experimental values. The band structure of CIGS is also in accordance with the current theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4893238.html;jsessionid=FjrKwVCM_BeyHU2oTydvxS1o.x-aip-live-02?itemId=/content/aip/journal/adva/4/8/10.1063/1.4893238&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4893238&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4893238'
Right1,Right2,Right3,