Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. G. A. Prinz, Science 282, 1660 (1998).
2. H. Ohno, Science 281, 951 (1998).
3. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
4. Y. Shon, Y. H. Kwon, S. U. Yuldashev, J. H. Leem, C. S. Park, D. J. Fu, H. J. Kim, T. W. Kang, and X. J. Fan, Appl. Phys. Lett. 81, 1845 (2002).
5. Y. Shon, S. Lee, I. T. Yoon, H. C. Jeon, D. J. Lee, T. W. Kang, J. D. Song, C. S. Yoon, D. Y. Kim, and C. S. Park, Appl. Phys. Lett. 99, 192109 (2011).
6. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
7. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
8. K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki and R. Zeller, Rev. Mod. Phys. 82, 1633 (2010).
9. T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, Nature 413, 716 (2001).
10. P. Esquinazi, D. Spemann, R. Hohne, A. Setzer, K. H. Han, and T. Butz, Phys. Rev. Lett. 91, 227201 (2003).
11. C. S. Park, X. Z. Jin, K. N. Yun, Y. R. Park, Y. Shon, N. K. Min, and C. J. Lee, Appl. Phys. Lett. 100, 192409 (2012).
12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
13. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
14. M. B. Lundeberg and J. A. Folk, Nat. Phys. 5, 894 (2009).
15. F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Science 317, 1530 (2007).
16. H. S. S. R. Matte, K. S. Subrahmanyam, and C. N. R. Rao, J. Phys. Chem. C 113, 9982 (2009).
17. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, Nano Letters 9, 220 (2008).
18. M. R. Karim, H. Shinoda, M. Nakai, K. Hatakeyama, H. Kamihata, T. Matsui, T. Taniguchi, M. Koinuma, K. Kuroiwa, M. Kurmoo, Y. Matsumoto, and S. Hayami, Adv. Fun. Mater. 23, 323 (2013).
19. J. J. Palacios, J. Fernandez-Rossier, and L. Brey, Phys. Rev. B 77, 195428 (2008).
20. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
21. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
22. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
23. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Nano Letters 7, 2758 (2007).
24. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).
25. H. Zhao, F. Liu, G. Han, Z. Liu, B. Liu, D. Fu, Y. Li, and M. J. Li, J. Solid State Electro. 18, 553 (2014).
26. Z. Chen, S. Tan, S. Zhang, J. Wang, S. Jin, Y. Zhang, and S. Hisashi, Jap. J. Appl. Phys. 39, 3 (2000).
27. H. W. Tien, Y. L. Huang, S. Y. Yang, S. T. Hsiao, W. H. Liao, H. M. Li, Y. S. Wang, J. Y. Wang, and C. C. M. Ma, J. Mater. Chem. 22, 2545 (2012).
28. C. Poinsignon, G. Berthomé, B. Prélot, F. Thomas, and F. Villiéras, J. Electrochem. Soc. 151, A1611 (2004).
29. O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008).
30. J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Letters 9, 3867 (2009).
31. M. M. Ugeda, I. B. F. Guinea, and J. M. Gomez-Rodriguez, Phys. Rev. Lett. 104, 096804 (2010).
32. L. Pisani, B. Montanari, and N. M. Harrison, New J. Phys. 10, 033002 (2008).
33. D. W. Shin, X. Meng, J. H. Lee, S. M. Yu, J. H. Yoo, K. S. Lim, S. P. Patole, and J. B. Yoo, J. Phys. Chem. C 115, 18327 (2011).
34. M. A. Garcia, M. L. Ruiz-Gonzalez, A. Quesada, J. L. Costa-Kramer, J. F. Fernandez, S. J. Khatib, A. Wennberg, A. C. Caballero, M. S. Martin-Gonzalez, M. Villegas, F. Briones, J. M. Gonzalez-Calbet, and A. Hernando, Phys. Rev. Lett. 94, 217206 (2005).
35. E. L. Nagaev, Phys. Rev. B 54, 16608 (1996).
36. S. U. Yuldashev, H. Im, V. S. Yalishev, C. S. Park, T. W. Kang, S. Lee, Y. Sasaki, X. Liu, and J. K. Furdyna, Appl. Phys. Lett. 82, 1206 (2003).
37. C. S. Park, Y. Zhao, J. H. Lee, D. Whang, Y. Shon, Y. H. Song, and C. J. Lee, Appl. Phys. Lett. 102, 032106 (2013).

Data & Media loading...


Article metrics loading...



We have doped manganese-oxide onto graphene by an electrochemical method. Graphene showed a clear ferromagnetic semiconductor behavior after doping of manganese-oxide. The manganese-oxide doped graphene has a coercive field (c) of 232 Oe at 10 K, and has the Curie temperature of 270 K from the temperature-dependent resistivity using transport measurement system. The ferromagnetism of manganese-oxide doped graphene attributes to the double-exchange from the coexistence of Mn3+ and Mn4+ on the surface of graphene. In addition, the semiconducting behavior is caused by the formation of manganese-oxide on graphene.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd