Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4893240
1.
1. G. A. Prinz, Science 282, 1660 (1998).
http://dx.doi.org/10.1126/science.282.5394.1660
2.
2. H. Ohno, Science 281, 951 (1998).
http://dx.doi.org/10.1126/science.281.5379.951
3.
3. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
http://dx.doi.org/10.1063/1.118061
4.
4. Y. Shon, Y. H. Kwon, S. U. Yuldashev, J. H. Leem, C. S. Park, D. J. Fu, H. J. Kim, T. W. Kang, and X. J. Fan, Appl. Phys. Lett. 81, 1845 (2002).
http://dx.doi.org/10.1063/1.1506778
5.
5. Y. Shon, S. Lee, I. T. Yoon, H. C. Jeon, D. J. Lee, T. W. Kang, J. D. Song, C. S. Yoon, D. Y. Kim, and C. S. Park, Appl. Phys. Lett. 99, 192109 (2011).
http://dx.doi.org/10.1063/1.3660274
6.
6. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
7.
7. T. Jungwirth, J. Sinova, J. Mašek, J. Kučera and A. H. MacDonald, Rev. Mod. Phys. 78, 809 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.809
8.
8. K. Sato, L. Bergqvist, J. Kudrnovský, P. H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V. A. Dinh, T. Fukushima, H. Kizaki and R. Zeller, Rev. Mod. Phys. 82, 1633 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1633
9.
9. T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, Nature 413, 716 (2001).
http://dx.doi.org/10.1038/35099527
10.
10. P. Esquinazi, D. Spemann, R. Hohne, A. Setzer, K. H. Han, and T. Butz, Phys. Rev. Lett. 91, 227201 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.227201
11.
11. C. S. Park, X. Z. Jin, K. N. Yun, Y. R. Park, Y. Shon, N. K. Min, and C. J. Lee, Appl. Phys. Lett. 100, 192409 (2012).
http://dx.doi.org/10.1063/1.4714504
12.
12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
13.
13. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
14.
14. M. B. Lundeberg and J. A. Folk, Nat. Phys. 5, 894 (2009).
http://dx.doi.org/10.1038/nphys1421
15.
15. F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Science 317, 1530 (2007).
http://dx.doi.org/10.1126/science.1144359
16.
16. H. S. S. R. Matte, K. S. Subrahmanyam, and C. N. R. Rao, J. Phys. Chem. C 113, 9982 (2009).
http://dx.doi.org/10.1021/jp903397u
17.
17. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, Nano Letters 9, 220 (2008).
http://dx.doi.org/10.1021/nl802810g
18.
18. M. R. Karim, H. Shinoda, M. Nakai, K. Hatakeyama, H. Kamihata, T. Matsui, T. Taniguchi, M. Koinuma, K. Kuroiwa, M. Kurmoo, Y. Matsumoto, and S. Hayami, Adv. Fun. Mater. 23, 323 (2013).
http://dx.doi.org/10.1002/adfm.201201418
19.
19. J. J. Palacios, J. Fernandez-Rossier, and L. Brey, Phys. Rev. B 77, 195428 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195428
20.
20. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
21.
21. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
22.
22. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
23.
23. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, Nano Letters 7, 2758 (2007).
http://dx.doi.org/10.1021/nl071254m
24.
24. L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rep. 473, 51 (2009).
http://dx.doi.org/10.1016/j.physrep.2009.02.003
25.
25. H. Zhao, F. Liu, G. Han, Z. Liu, B. Liu, D. Fu, Y. Li, and M. J. Li, J. Solid State Electro. 18, 553 (2014).
26.
26. Z. Chen, S. Tan, S. Zhang, J. Wang, S. Jin, Y. Zhang, and S. Hisashi, Jap. J. Appl. Phys. 39, 3 (2000).
27.
27. H. W. Tien, Y. L. Huang, S. Y. Yang, S. T. Hsiao, W. H. Liao, H. M. Li, Y. S. Wang, J. Y. Wang, and C. C. M. Ma, J. Mater. Chem. 22, 2545 (2012).
28.
28. C. Poinsignon, G. Berthomé, B. Prélot, F. Thomas, and F. Villiéras, J. Electrochem. Soc. 151, A1611 (2004).
http://dx.doi.org/10.1149/1.1789411
29.
29. O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.047209
30.
30. J. Zhou, Q. Wang, Q. Sun, X. S. Chen, Y. Kawazoe, and P. Jena, Nano Letters 9, 3867 (2009).
http://dx.doi.org/10.1021/nl9020733
31.
31. M. M. Ugeda, I. B. F. Guinea, and J. M. Gomez-Rodriguez, Phys. Rev. Lett. 104, 096804 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.096804
32.
32. L. Pisani, B. Montanari, and N. M. Harrison, New J. Phys. 10, 033002 (2008).
http://dx.doi.org/10.1088/1367-2630/10/3/033002
33.
33. D. W. Shin, X. Meng, J. H. Lee, S. M. Yu, J. H. Yoo, K. S. Lim, S. P. Patole, and J. B. Yoo, J. Phys. Chem. C 115, 18327 (2011).
http://dx.doi.org/10.1021/jp204757u
34.
34. M. A. Garcia, M. L. Ruiz-Gonzalez, A. Quesada, J. L. Costa-Kramer, J. F. Fernandez, S. J. Khatib, A. Wennberg, A. C. Caballero, M. S. Martin-Gonzalez, M. Villegas, F. Briones, J. M. Gonzalez-Calbet, and A. Hernando, Phys. Rev. Lett. 94, 217206 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.217206
35.
35. E. L. Nagaev, Phys. Rev. B 54, 16608 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.16608
36.
36. S. U. Yuldashev, H. Im, V. S. Yalishev, C. S. Park, T. W. Kang, S. Lee, Y. Sasaki, X. Liu, and J. K. Furdyna, Appl. Phys. Lett. 82, 1206 (2003).
http://dx.doi.org/10.1063/1.1554482
37.
37. C. S. Park, Y. Zhao, J. H. Lee, D. Whang, Y. Shon, Y. H. Song, and C. J. Lee, Appl. Phys. Lett. 102, 032106 (2013).
http://dx.doi.org/10.1063/1.4788928
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893240
Loading
/content/aip/journal/adva/4/8/10.1063/1.4893240
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4893240
2014-08-13
2016-09-28

Abstract

We have doped manganese-oxide onto graphene by an electrochemical method. Graphene showed a clear ferromagnetic semiconductor behavior after doping of manganese-oxide. The manganese-oxide doped graphene has a coercive field (c) of 232 Oe at 10 K, and has the Curie temperature of 270 K from the temperature-dependent resistivity using transport measurement system. The ferromagnetism of manganese-oxide doped graphene attributes to the double-exchange from the coexistence of Mn3+ and Mn4+ on the surface of graphene. In addition, the semiconducting behavior is caused by the formation of manganese-oxide on graphene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4893240.html;jsessionid=-yQYYas_eMlHwPLdP4fJSd6L.x-aip-live-02?itemId=/content/aip/journal/adva/4/8/10.1063/1.4893240&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4893240&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4893240'
Right1,Right2,Right3,