Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 05023 (2006).
2. F. Azough, R. Freer, M. Thrall, R. Cernik, F. Tuna, and D. Collison, J. Eur. Ceram. Soc. 30, 727 (2010).
3. Reetu A. , Agarwal, S. Sanghi, Ashima, and N. Ahlawat, J. Phys. D: Appl. Phys. 45, 165001 (2012).
4. L. H. Yin, Y. P. Sun, F. H. Zhang, W. B. Wu, X. Luo, X. B. Zhu, Z. R. Yang, J. M. Dai, W. H. Song, and R. L. Zhang, J. Alloys Compd. 488, 254 (2009).
5. V. A. Khomchenko, I. O. Troyanchuk, T. M. R. Maria, D. V. Karpinsky, S. Das, V. S. Amaral, and J. A. Paixao, J. Appl. Phys. 112, 064105 (2012).
6. V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, L. Jian, A. L. Kholkin, A. M. L. Lopes, Y. G. Pogorelov, J. P. Araujo, and M. Maglione, J. Appl. Phys. 103, 024105 (2008).
7. A. K. Kundu, R. Ranjit, B. Kundys, N. Nguyen, V. Caignaert, and V. Pralong, Appl. Phys. Lett. 93, 052906 (2008).
8. M. Cazayous, D. Malka, D. Lebeugle, and D. Colson, Appl. Phys. Lett. 91, 071910 (2007).
9. I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C 15, 4835 (1982).
10. N. Wang, J. Cheng, A. Pyatakov, A. K. Zvezdin, J. F. Li, L. E. Cross, and D. Viehland, Phys. Rev. B 72, 104434 (2005).
11. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev. B 71, 014113 (2005).
12. G. L. Yuan, K. Z. B. Kishi, J. M. Lui, S. W. Or, Y. P. Wang, and Z. G. Lui, J. Am. Ceram. Soc. 89, 3136 (2006).
13. Y. H. Lin, Q. Jiang, Y. Wang, C. W. Nan, L. Chen, and J. Yu, Appl. Phys. Lett. 9, 172507 (2007).
14. Z. X. Cheng, A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura, S. J. Zhang, and T. R. Shrout, J. Appl. Phys. 103, 07E507 (2008).
15. V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, L. Jian, and A. L. Kholkin, Appl. Phys. Lett. 90, 242901 (2007).
16. Y. Du, Z. X. Zheng, M. Shahbazi, E. W. Collings, S. X. Dou, and X. L. Wang, J. Alloys Compd. 490, 637 (2010).
17. A. Palewich, I. Sosnowska, R. Przenioslo, and A. W. Hewat, Acta Phys. Pol., A 117, 296 (2010).
18. K. M. Rabe, C. H. Ahn, and D. Shindo, Handbook of advanced magnetic materials (Springer, USA, 2006).
19. L. Ben, and D. C. Sinclair, Appl. Phys. Lett. 98, 092907 (2011).
20. J. De Sitter, C. Dauwe, E. De Grave, and A. Govaert, Solid State Commun. 18, 645 (1976).
21. D. Kothari, V. R. Reddy, A. Gupta, V. Sathe, and A. Banerjee, Appl. Phys. Lett. 91, 202505 (2007).
22. D. Kothari, V. R. Reddy, A. Gupta, D. M. Phase, N. Lakshmi, S. K. Deshpande, and A. M. Awasthi, J. Phys.: Condens. Matter 19, 136202 (2007).
23. A. R. Makhdoom, M. J. Akhtar, M. A. Rafiq, M. Siddique, M. Iqbal, and M. M. Hasan, AIP Adv. 4, 037113 (2014).
24. I. Sosnowska, and R. Przeniosło, Phys. Rev. B 84, 144404 (2011).
25. I. Sosnowska, M. Loewenhaupt, W. I. F. David, and R. M. Ibberson, Mater. Sci. Forum 683, 133 (1993).
26. I. Sosnowska, R. Przeniosło, P. Fisher, and V. A. Murov, J. Magn. Magn.Mater. 160, 384 (1996).
27. C. Ederer and N. A. Spaldin, Phys. Rev. B 71, 060401 (2005).
28. F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan, and J. Zhu, Appl. Phys. Lett. 89, 242914 (2006).
29. M. Ramazanoglu, M. Laver, W. Ratcliff, S. M. Watson, W. C. Chen, A. Jackson, K. Kothapalli, S. Lee, S. W. Cheong, and V. Kiryukhin, Phys. Rev. Lett. 107, 207206 (2011).
30. S. Anjum, G. H. Jaffari, A. K. Rumaiz, M. S. Rafique, and S. I. Shah, J. Phys. D: Appl. Phys. 43, 265001 (2010).
31. C. E. Rodriguez Torres, G. A. Pasquevich, P. Mendoza Zelis, F. Golmar, S. P. Heluani, S. K. Nayak, W. A. Adeagbo, W. Hergert, M. Hoffmann, A. Ernst, P. Esquinazi, and S. J. Stewart, Phys. Rev. B 89, 104411 (2014).

Data & Media loading...


Article metrics loading...



BiAFeO (A = La, Ca, Sr, Ba) multiferroics were studied using x-ray, neutron diffraction and magnetization techniques. All the samples crystallized in rhombohedral structure with space group R3c. The compounds exhibit antiferromagnetic (AFM) ordering at 300 K and no evidence of further structural or magnetic transition was observed on lowering of temperature below it. The magnetic structure of these substituted compounds are found to be collinear G-type AFM structure as against the non collinear incommensurate magnetic structure reported in the case of parent compound. The moments on Fe at 6 K are aligned along the -axis in the case of Ca-doped sample. With increase in the ionic radii of dopant, the moments are found to be aligned in the plane and the angle of tilt away from the -axis increases. The observed change in the magnetic structure with substitution is attributed to the intrinsic structural distortion as evidenced by the change in the bond angle (Fe-O-Fe) and bond distances (Bi-O, Fe-O). It has been found that heterovalent substitution A2+ results in the formation of oxygen vacancies in the parent lattices as the possibility of Fe4+ ruled out by Mössbauer spectra recorded at room temperature. Higher value of remnant magnetization (0.4187 emu/g) and coercivity (4.7554kOe) is observed in BiBaFeO sample in comparison to other substituted samples revealing a strong correlation between ionic radii and magnetization.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd