Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4893242
1.
1. H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, Reports on Progress in Physics 69, 1325 (2006).
http://dx.doi.org/10.1088/0034-4885/69/5/R02
2.
2. R. J. Schoelkopf and S. M. Girvin, Nature 451, 664 (2008).
http://dx.doi.org/10.1038/451664a
3.
3. J. Q. You and F. Nori, Nature 474, 589 (2011).
http://dx.doi.org/10.1038/nature10122
4.
4. Z.-L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Rev. Mod. Phys. 85, 623 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.623
5.
5. L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nature 460, 240 (2009).
http://dx.doi.org/10.1038/nature08121
6.
6. L. Steffen, Y. Salathe, M. Oppliger, P. Kurpiers, M. Baur, C. Lang, C. Eichler, G. Puebla-Hellmann, A. Fedorov, and A. Wallraff, Nature 500, 319 (2013).
http://dx.doi.org/10.1038/nature12422
7.
7. H. Paik, D. I. Schuster, L. S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Phys. Rev. Lett. 107, 240501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.240501
8.
8. M. Steger, K. Saeedi, M. L. W. Thewalt, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, Science 336, 1280 (2012).
http://dx.doi.org/10.1126/science.1217635
9.
9. P. Becker, Contemporary Physics 53, 461 (2012).
http://dx.doi.org/10.1080/00107514.2012.746054
10.
10. P. T. Greenland, S. A. Lynch, A. F. G. van der Meer, B. N. Murdin, C. R. Pidgeon, B. Redlich, N. Q. Vinh, and G. Aeppli, Nature 465, 1057 (2010).
http://dx.doi.org/10.1038/nature09112
11.
11. A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel, M. L. W. Thewalt, K. M. Itoh, and S. A. Lyon, Nature Materials 11, 143 (2012).
http://dx.doi.org/10.1038/nmat3182
12.
12. K. Saeedi, S. Simmons, J. Z. Salvail, P. Dluhy, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, J. J. L. Morton, and M. L. W. Thewalt, Science 342, 830 (2013).
http://dx.doi.org/10.1126/science.1239584
13.
13. A. J. Mayur, M. D. Sciacca, A. K. Ramdas, and S. Rodriguez, Phys. Rev. B 48, 10893 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.10893
14.
14. G. Burkard and A. Imamoglu, Phys. Rev. B 74, 041307 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.041307
15.
15. M. Abanto, L. Davidovich, B. Koiller, and R. L. de Matos Filho, Phys. Rev. B 81, 085325 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085325
16.
16. P.-Q. Jin, M. Marthaler, A. Shnirman, and G. Schön, Phys. Rev. Lett. 108, 190506 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.190506
17.
17. X. Hu, Y.-x. Liu, and F. Nori, Physical Review B 86, 035314 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.035314
18.
18. A. Cottet and T. Kontos, Phys. Rev. Lett. 105, 160502 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.160502
19.
19. J. T. Muhonen, J. P. Dehollain, A. Laucht, F. E. Hudson, T. Sekiguchi, K. M. Itoh, D. N. Jamieson, J. C. McCallum, A. S. Dzurak, and A. Morello, ArXiv e-prints (2014), arXiv:1402.7140 [cond-mat.mes-hall].
20.
20. S. Gevorgian, L. Linner, and E. Kollberg, Microwave Theory and Techniques, IEEE Transactions on 43, 772 (1995).
http://dx.doi.org/10.1109/22.375223
21.
21. D. Pozar, Microwave Engineering (Wiley, 2005).
22.
22. M. Goppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek, G. Puebla, L. Steffen, and A. Wallraff, Journal of Applied Physics 104, 113904 (2008).
http://dx.doi.org/10.1063/1.3010859
23.
23. D. Griffiths, Introduction to electrodynamics (Prentice Hall, 1999).
24.
24. A. A. Abdumalikov, O. Astafiev, Y. Nakamura, Y. A. Pashkin, and J. Tsai, Phys. Rev. B 78, 180502 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.180502
25.
25. T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Nature Physics 6, 772 (2010).
http://dx.doi.org/10.1038/nphys1730
26.
26. R. Simons, Coplanar Waveguide Circuits, Components, and Systems, Wiley Series in Microwave and Optical Engineering (Wiley, 2001) section 2.11.
27.
27. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science 309, 2180 (2005).
http://dx.doi.org/10.1126/science.1116955
28.
28. R. Huebener, R. Kampwirth, R. Martin, T. W. Barbee Jr., and R. Zubeck, Journal of Low Temperature Physics 19, 247 (1975).
http://dx.doi.org/10.1007/BF00116179
29.
29. Y. W. Kim, Y. H. Kahng, J.-H. Choi, and S.-G. Lee, Applied Superconductivity, IEEE Transactions on 19, 2649 (2009).
http://dx.doi.org/10.1109/TASC.2009.2019099
30.
30. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, Nature 425, 817 (2003).
http://dx.doi.org/10.1038/nature02037
31.
31. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O'Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrom, J. M. Martinis, and A. N. Cleland, Applied Physics Letters 100, 113510 (2012).
http://dx.doi.org/10.1063/1.3693409
32.
32. R. Rahman, G. P. Lansbergen, S. H. Park, J. Verduijn, G. Klimeck, S. Rogge, and L. C. L. Hollenberg, Phys. Rev. B 80, 165314 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165314
33.
33. F. A. Mohiyaddin, R. Rahman, R. Kalra, G. Klimeck, L. C. L. Hollenberg, J. J. Pla, A. S. Dzurak, and A. Morello, Nano Letters 13, 1903 (2013).
http://dx.doi.org/10.1021/nl303863s
34.
34. A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark, and A. S. Dzurak, Nature 467, 687 (2010).
http://dx.doi.org/10.1038/nature09392
36.
36. W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).
http://dx.doi.org/10.1103/PhysRev.98.915
37.
37. K. Y. Tan, K. W. Chan, M. Möttönen, A. Morello, C. Yang, J. van Donkelaar, A. Alves, J.-M. Pirkkalainen, D. N. Jamieson, R. G. Clark, and A. S. Dzurak, Nano letters 10, 11 (2010).
http://dx.doi.org/10.1021/nl901635j
38.
38. A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.062320
39.
39. S. Haroche, Fundamental systems in quantum optics (Elsevier, New York, 1992) p. 767.
40.
40. A. Morello, C. C. Escott, H. Huebl, L. H. Willems van Beveren, L. C. L. Hollenberg, D. N. Jamieson, A. S. Dzurak, and R. G. Clark, Phys. Rev. B 80, 081307 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.081307
41.
41. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature 431, 162 (2004).
http://dx.doi.org/10.1038/nature02851
42.
42. K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor, A. A. Houck, and J. R. Petta, Nature 490, 380 (2012).
http://dx.doi.org/10.1038/nature11559
43.
43.We neglect higher resonator modes since the qubit is hugely detuned from those.
44.
44. J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature 449, 443 (2007).
http://dx.doi.org/10.1038/nature06184
45.
45. Y. Asada and H. Nosé, Journal of the Physical Society of Japan 26, 347 (1969).
http://dx.doi.org/10.1143/JPSJ.26.347
46.
46. C. Song, M. P. DeFeo, K. Yu, and B. L. T. Plourde, Applied Physics Letters 95, 232501 (2009).
http://dx.doi.org/10.1063/1.3271523
47.
47. D. Bothner, T. Gaber, M. Kemmler, D. Koelle, and R. Kleiner, Applied Physics Letters 98, 102504 (2011).
http://dx.doi.org/10.1063/1.3560480
48.
48. D. K. Finnemore, T. F. Stromberg, and C. A. Swenson, Phys. Rev. 149, 231 (1966).
http://dx.doi.org/10.1103/PhysRev.149.231
49.
49. B. W. Maxfield and W. L. McLean, Physical Review 139, 1515 (1965).
http://dx.doi.org/10.1103/PhysRev.139.A1515
50.
50. M. L. Latimer, Z. L. Xiao, J. Hua, A. Joshi-Imre, Y. L. Wang, R. Divan, W. K. Kwok, and G. W. Crabtree, Phys. Rev. B 87, 020507 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.020507
51.
51. A. G. P. Troeman, H. Derking, B. Borger, J. Pleikies, D. Veldhuis, and H. Hilgenkamp, Nano Letters 7, 2152 (2007).
http://dx.doi.org/10.1021/nl070870f
52.
52. E. Mitchell and S. Lam, Physics Procedia 36, 382 (2012).
http://dx.doi.org/10.1016/j.phpro.2012.06.249
53.
53. J. Bourassa, J. M. Gambetta, A. A. Abdumalikov, O. Astafiev, Y. Nakamura, and A. Blais, Phys. Rev. A 80, 032109 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.032109
54.
54. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, Nature Materials 8, 383 (2009).
http://dx.doi.org/10.1038/nmat2420
55.
55. C. H. Yang, A. Rossi, R. Ruskov, N. S. Lai, F. A. Mohiyaddin, S. Lee, C. Tahan, G. Klimeck, A. Morello, and A. S. Dzurak, Nature Communications 4 (2013).
http://dx.doi.org/10.1038/ncomms3069
56.
56. J. McCallum, M. L. Dunn, and E. Gauja, MRS Online Proceedings Library 1074, null (2008).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893242
Loading
/content/aip/journal/adva/4/8/10.1063/1.4893242
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4893242
2014-08-13
2016-09-29

Abstract

Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4893242.html;jsessionid=11-cwNO4ZqchCOqPI_5w-6ab.x-aip-live-06?itemId=/content/aip/journal/adva/4/8/10.1063/1.4893242&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4893242&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4893242'
Right1,Right2,Right3,