1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electron diffraction study of the sillenites Bi12SiO20, Bi25FeO39 and Bi25InO39: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Department of Physics, University of North Florida, Jacksonville, FL 32224 USA
    2 Laboratoire de Nanotechnologie et d’Instrumentation Optique - UMR CNRS 6279, Université Technologie de Troyes, 12 rue Marie Curie, Troyes 10010, France
    3 Department of Chemistry, University of North Florida, Jacksonville, FL 32224 USA
    4 The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
    5 School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502 Japan
    AIP Advances 4, 087125 (2014); http://dx.doi.org/10.1063/1.4893341
/content/aip/journal/adva/4/8/10.1063/1.4893341
1.
1. S. L. Sochava, K. Buse, and E. Krätzig, Phys. Rev. B 51, 4684 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4684
2.
2. H. C. Pedersen, D. J. Webb, and P. M. Johansen, J. Opt. Soc. Am. B 15, 2573 (1998).
http://dx.doi.org/10.1364/JOSAB.15.002573
3.
3. V. Jerez, I. de Oliveira, and J. Frejlich, Journal of Applied Physics 109, 024901 (2011).
http://dx.doi.org/10.1063/1.3533421
4.
4. J. Ricardo, M. Muramatsu, F. Palcios, M. Gesualdi, J. Valin, and M. A. P. Lopez, Optics and Lasers in Engineering (2013).
5.
5. A. Ballman, H. Brown, P. Tien, and R. Martin, Journal of Crystal Growth 20, 251 (1973).
http://dx.doi.org/10.1016/0022-0248(73)90013-4
6.
6. V. Chmyrev, V. Skorikov, and E. Larina, Inorganic Materials 42, 381 (2006).
http://dx.doi.org/10.1134/S0020168506040091
7.
7. A. Efremidis, N. Deliolanis, C. Manolikas, and E. Vanidhis, Applied Physics B: Lasers and Optics 95, 467 (2009).
http://dx.doi.org/10.1007/s00340-009-3498-8
8.
8. I. de Oliveira, T. dos Santos, J. Carvalho, and J. Frejlich, Applied Physics B: Lasers and Optics 105, 301 (2011).
http://dx.doi.org/10.1007/s00340-011-4572-6
9.
9. A. Kamshilin, A. Grachev, S. Golik, R. Romashko, and Y. Kulchin, Applied Physics B 106, 899 (2012).
http://dx.doi.org/10.1007/s00340-011-4742-6
10.
10. A. Moura, A. Canabarro, W. Soares, E. de Lima, J. Carvalho, and P. dos Santos, Optics Communications 295, 197 (2013).
http://dx.doi.org/10.1016/j.optcom.2012.12.085
11.
11. E. L. Venturini, E. G. Spencer, and A. A. Ballman, Journal of Applied Physics 40, 1622 (1969).
http://dx.doi.org/10.1063/1.1657822
12.
12. M. Peltier and F. Micheron, Journal of Applied Physics 48, 3683 (1977).
http://dx.doi.org/10.1063/1.324274
13.
13. W. Yao, H. Wang, X. Xu, J. Zhou, X. Yang, Y. Zhang, S. Shang, and M. Wang, Chemical Physics Letters 377, 501 (2003).
http://dx.doi.org/10.1016/S0009-2614(03)01209-0
14.
14. W. F. Yao, H. Wang, X. H. Xu, X. F. Cheng, J. Huang, S. X. Shang, X. N. Yang, and M. Wang, Applied Catalysis A: General 243, 185 (2003).
http://dx.doi.org/10.1016/S0926-860X(02)00564-1
15.
15. X. Lin, F. Huang, W. Wang, Y. Xia, Y. Wang, M. Liu, and J. Shi, Catalysis Communications 9, 572 (2008).
http://dx.doi.org/10.1016/j.catcom.2007.02.004
16.
16. B.-H. Kim, T.-H. Lim, J.-W. Roh, S.-G. Lee, C. Ju, S. Park, S. Hong, and G. Lee, Reaction Kinetics, Mechanisms and Catalysis 99, 217 (2010).
http://dx.doi.org/10.1007/s11144-009-0122-1
17.
17. A. Sun, H. Chen, C. Song, F. Jiang, X. Wang, and Y. Fu, RSC Advances 3, 4332 (2013).
http://dx.doi.org/10.1039/c3ra22626c
18.
18. M. Valant and D. Suvorov, Journal of the American Ceramic Society 84, 2900 (2001).
http://dx.doi.org/10.1111/j.1151-2916.2001.tb01112.x
19.
19. M. Valant and D. Suvorov, Chemistry of Materials 14, 3471 (2002).
http://dx.doi.org/10.1021/cm021173l
20.
20. M. Valant and D. Suvorov, Journal of the American Ceramic Society 85, 355 (2002).
http://dx.doi.org/10.1111/j.1151-2916.2002.tb00096.x
21.
21. H. Sekhar and D. N. Rao, Journal of Materials Science: Materials in Electronics , 1 (2013).
22.
22. R. Köferstein, T. Buttlar, and S. G. Ebbinghaus, Journal of Solid State Chemistry (2014).
23.
23. T. Milenov, P. Rafailov, C. Thomsen, A. Egorysheva, R. Titorenkova, B. Kostova, and V. Skorikov, Optical Materials 33, 1573 (2011).
http://dx.doi.org/10.1016/j.optmat.2011.04.001
24.
24. H. Sekhar, P. P. Kiran, and D. N. Rao, Materials Chemistry and Physics 130, 113 (2011).
http://dx.doi.org/10.1016/j.matchemphys.2011.06.010
25.
25. D. J. Arenas, T. Jegorel, C. Knab, L. V. Gasparov, C. Martin, D. M. Pajerowski, H. Kohno, and M. W. Lufaso, Phys. Rev. B 86, 144116 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.144116
26.
26. A. F. Lima, S. A. S. Farias, and M. V. Lalic, Journal of Applied Physics 110, 083705 (2011).
http://dx.doi.org/10.1063/1.3652751
27.
27. H. Deng, W. Hao, and H. Xu, Rare Metals 30, 135 (2011).
http://dx.doi.org/10.1007/s12598-011-0255-z
28.
28. S. A. Farias and J. B. L. Martins, Chemical Physics Letters 533, 78 (2012).
http://dx.doi.org/10.1016/j.cplett.2012.03.030
29.
29. Y. Hu and D. C. Sinclair, Chemistry of Materials 25, 48 (2012).
http://dx.doi.org/10.1021/cm3031363
30.
30. L. A. S. de Oliveira, J. P. Sinnecker, M. D. Vieira, and A. Penton-Madrigal, Journal of Applied Physics 107, 09D907 (2010).
http://dx.doi.org/10.1063/1.3362927
31.
31. R. Rao, A. B. Garg, and T. Sakuntala, Journal of Applied Physics 108, 083508 (2010).
http://dx.doi.org/10.1063/1.3496659
32.
32. L. Wiehl, A. Friedrich, E. Hausshl, W. Morgenroth, A. Grzechnik, K. Friese, B. Winkler, K. Refson, and V. Milman, Journal of Physics: Condensed Matter 22, 505401 (2010).
http://dx.doi.org/10.1088/0953-8984/22/50/505401
33.
33. S. Radaev, V. Simonov, and Y. F. Kargin, Acta Crystallographica Section B: Structural Science 48, 604 (1992).
http://dx.doi.org/10.1107/S0108768192003847
34.
34. W. Wojdowski, Physica Status Solidi (B) 130, 121 (1985).
http://dx.doi.org/10.1002/pssb.2221300109
35.
35. S. F. Radaev, L. A. Muradyan, and V. I. Simonov, Acta Crystallographica Section B 47, 1 (1991).
36.
36. V. Radaev and S. F. Simonov, Kristallografiya 37, 914 (1992).
37.
37. D. Craig and N. Stephenson, Journal of Solid State Chemistry 15, 1 (1975).
http://dx.doi.org/10.1016/0022-4596(75)90264-9
38.
38. Y. Sun, X. Xiong, Z. Xia, H. Liu, Y. Zhou, M. Luo, and C. Wang, Ceramics International (2012).
39.
39. A. I. Becerro, F. Langenhorst, R. J. Angel, S. Marion, C. A. McCammon, and F. Seifert, Physical Chemistry Chemical Physics 2, 3933 (2000).
http://dx.doi.org/10.1039/b003847o
40.
40. C. McCammon, A. Becerro, F. Langenhorst, R. Angel, S. Marion, and F. Seifert, Journal of Physics: Condensed Matter 12, 2969 (2000).
http://dx.doi.org/10.1088/0953-8984/12/13/308
41.
41. C. Hou, A. Manthiram, L. Rabenberg, and J. Goodenough, Journal of Materials Research 5, 9 (1990).
http://dx.doi.org/10.1557/JMR.1990.0009
42.
42. D. Werder, C. Chen, R. Cava, and B. Batlogg, Physical Review B 37, 2317 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.2317
43.
43. T. Williams, Y. Maeno, I. Mangelschots, A. Reller, and G. Bednorz, Physica C: Superconductivity 161, 331 (1989).
http://dx.doi.org/10.1016/0921-4534(89)90344-4
44.
44. J. Castles, J. Cowley, and A. Spargo, Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 27, 376 (1971).
http://dx.doi.org/10.1107/S0567739471000834
45.
45. C. Chaillout and J. Remeika, Solid state communications 56, 833 (1985).
http://dx.doi.org/10.1016/0038-1098(85)90415-6
46.
46. R. Withers, Progress in Crystal Growth and Characterization 18, 139 (1989).
http://dx.doi.org/10.1016/0146-3535(89)90027-0
47.
47. G. Van Tendeloo, J. Van Landuyt, and S. Amelinckx, Physica Status Solidi (A) 33, 723 (1976).
http://dx.doi.org/10.1002/pssa.2210330233
48.
48. J. Li, Y. Matsui, S. Park, and Y. Tokura, Physical review letters 79, 297 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.297
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893341
Loading
/content/aip/journal/adva/4/8/10.1063/1.4893341
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4893341
2014-08-15
2014-09-30

Abstract

We present an electron diffraction study of three sillenites, BiSiO, BiFeO, and BiInO synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of BiFeO and BiInO show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi3+, random and ordered oxygen-vacancies, and a frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4893341.html;jsessionid=1uumxnncmf8i7.x-aip-live-06?itemId=/content/aip/journal/adva/4/8/10.1063/1.4893341&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electron diffraction study of the sillenites Bi12SiO20, Bi25FeO39 and Bi25InO39: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893341
10.1063/1.4893341
SEARCH_EXPAND_ITEM