1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Investigating the magnetovolume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/8/10.1063/1.4893469
1.
1. F. Körmann, A. Dick, T. Hickel, and J. Neugebauer, Phys. Rev. B 79, 184406 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.184406
2.
2. J. J. Adams, D. S. Agosta, R. G. Leisure, and H. Ledbetter, J. Appl. Phys. 100, 113530 (2006).
http://dx.doi.org/10.1063/1.2365714
3.
3. E. W. Lee, Rep. Prog. Phys. 18, 184 (1955).
http://dx.doi.org/10.1088/0034-4885/18/1/305
4.
4. X. Sha and R. E. Cohen, J. Phys.: Condens. Matter 22, 372201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/37/372201
5.
5. M. Yu. Lavrentiev, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B 81, 184202 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.184202
6.
6. P. J. Brown, T. Chatterji, J. Kästner, and K. R. A. Ziebeck, J. Phys.: Condens. Matter 16, 5349 (2004).
http://dx.doi.org/10.1088/0953-8984/16/29/024
7.
7. E. R. Callen and H. B. Callen, Phys. Rev. 129, 578 (1963).
http://dx.doi.org/10.1103/PhysRev.129.578
8.
8. M. Shiga, IEEE Transl. J. Magn. Jpn. 6, 1039 (1991).
http://dx.doi.org/10.1109/TJMJ.1991.4565306
9.
9. Y. Tanji, J. Phys. Soc. Jpn. 31, 1366 (1971).
http://dx.doi.org/10.1143/JPSJ.31.1366
10.
10. G. Oomi and N. Mōri, Physica B 119, 149 (1983).
http://dx.doi.org/10.1016/0378-4363(83)90181-X
11.
11. B. Grossmann and D. G. Rancourt, Phys. Rev. B 54, 12294 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.12294
12.
12. B. Skubic, J. Hellsvik, L. Nordström, and O. Eriksson, Phys.: Condens. Matter 20, 315203 (2008).
http://dx.doi.org/10.1088/0953-8984/20/31/315203
13.
13. D. Wang, J. Weerasinghe, and L. Bellaiche, Phys. Rev. Lett. 109, 067203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.067203
14.
14. P.-W. Ma, C. H. Woo, and S. L. Dudarev, Phys. Rev. B 78, 024434 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.024434
15.
15. P.-W. Ma, S. L. Dudarev, A. A. Semenov, and C. H. Woo, Phys. Rev. E 82, 031111 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.031111
16.
16. S. Chiesa, P. M. Derlet, and S. L. Dudarev, Phys. Rev. B 79, 214109 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.214109
17.
17. S. Chiesa, P. M. Derlet, S. L. Dudarev, and H. Van Swygenhoven, J. Phys.: Condens. Matter 23, 206001 (2011).
http://dx.doi.org/10.1088/0953-8984/23/20/206001
18.
18. P.-W. Ma and C. H. Woo, Phys. Rev. E 79, 046703 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.046703
19.
19. I. P. Omelyan, I. M. Mryglod, and R. Folk, Phys. Rev. Lett. 86, 898 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.898
20.
20. I. P. Omelyan, I. M. Mryglod, and R. Folk, Phys. Rev. E 64, 016105 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.016105
21.
21. I. P. Omelyan, I. M. Mryglod, and R. Folk, Phys. Rev. E 66, 026701 (2002).
http://dx.doi.org/10.1103/PhysRevE.66.026701
22.
22. S.-H. Tsai, M. Krech, and D. P. Landau, Brazil. J. Phys. 34, 384 (2004).
http://dx.doi.org/10.1590/S0103-97332004000300009
23.
23. S.-H. Tsai, H. K. Lee, and D. P. Landau, Am. J. Phys. 73, 615 (2005).
http://dx.doi.org/10.1119/1.1900096
24.
24. W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963).
http://dx.doi.org/10.1103/PhysRev.130.1677
25.
25. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
http://dx.doi.org/10.1103/RevModPhys.15.1
26.
26. R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
http://dx.doi.org/10.1088/0034-4885/29/1/306
27.
27. H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
28.
28. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987).
29.
29. G. Leibfried and W. Ludwig, Solid State Phys. 12, 275 (1961).
30.
30. C. Wei, D. Srivastava, and K. Cho, Nano Lett. 2, 647 (2002).
http://dx.doi.org/10.1021/nl025554+
31.
31. J. De Launay, J. Chem. Phys. 22, 1676 (1954).
http://dx.doi.org/10.1063/1.1739871
32.
32. Y. Shiotani, J. L. Sarrao, and G. Zheng, Phys. Rev. Lett. 96, 057203 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.057203
33.
33. J. S. Dyck, Č. Drašar, P. Lošt’ák, and C. Uher, Phys. Rev. B 71, 115214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115214
34.
34. G. L. Zuppardo and K. G. Ramanathan, J. Opt. Soc. Am. 61, 1607 (1971).
http://dx.doi.org/10.1364/JOSA.61.001607
35.
35. P.-W. Ma, C. H. Woo, and S. L. Dudarev, Philos. Mag. 89, 2921 (2009).
http://dx.doi.org/10.1080/14786430903130854
36.
36. J.-W. Feng, K.-C. Yu, and C. Ye, Phys. Rev. B 63, 180401R (2001).
http://dx.doi.org/10.1103/PhysRevB.63.180401
37.
37. N. Ridley and H. Stuart, J. Phys. D: Appl. Phys. 1, 1291 (1968).
http://dx.doi.org/10.1088/0022-3727/1/10/308
38.
38. M. Friák, M. Šob, and V. Vitek, Phys. Rev. B 63, 052405 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.052405
39.
39. M. Ekman, B. Sadigh, K. Einarsdotter, and P. Blaha, Phys. Rev. B 58, 5296 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.5296
40.
40. S. Morán, C. Ederer, and M. Fähnle, Phys. Rev. B 67, 012407 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.012407
41.
41. R. F. Sabiryanov and S. S. Jaswal, Phys. Rev. Lett. 83, 2062 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2062
42.
42. R. F. Sabiryanov, S. K. Bose, and O. N. Mryasov, Phys. Rev. B 51, 8958 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.8958
43.
43. C. Kittel, Introduction to Solid State Physics. (Wiley, New York, 2005).
44.
44. N. Kawamoto, Y. Murakami, D. Shindo, S. Fujieda, A. Fujita, and K. Fukamichi, Mater. Trans. 46, 1764 (2005).
http://dx.doi.org/10.2320/matertrans.46.1764
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893469
Loading
/content/aip/journal/adva/4/8/10.1063/1.4893469
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4893469
2014-08-15
2014-12-21

Abstract

The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC) iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4893469.html;jsessionid=4u3aapqeaudiq.x-aip-live-02?itemId=/content/aip/journal/adva/4/8/10.1063/1.4893469&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Investigating the magnetovolume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893469
10.1063/1.4893469
SEARCH_EXPAND_ITEM