1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
On magnon mediated Cooper pair formation in ferromagnetic superconductors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/4/8/10.1063/1.4893472
1.
1. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. Haselwimmer, M. Steiner, E. Pugh, I. Walker, S. Julian, P. Monthoux, G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature (London) 406, 587 (2000).
http://dx.doi.org/10.1038/35020500
2.
2. A. Huxley, I. Sheikin, E. Ressouche, N. Kernavanouis, D. Braithwaite, R. Calemczuk, and J. Flouquet, Phys. Rev. B 63, 144519 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.144519
3.
3. C. Pfleiderer, M. Uhlarz, S. Hayden, R. Vollmer, H. v. Löhneysen, N. Bernhoeft, and G. Lonzarich, Nature(London) 412, 58 (2001).
http://dx.doi.org/10.1038/35083531
4.
4. D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J-P. Brison, E. Lhotel, and C. Paulsen, Nature (London) 413, 613 (2001).
http://dx.doi.org/10.1038/35098048
5.
5. D. Fay and J. Appel, Phys Rev. B 22, 3173 (1980).
http://dx.doi.org/10.1103/PhysRevB.22.3173
6.
6. N. Karchev, cond-mat/0206534
7.
7. N. Karchev, Phys. Rev. B 67, 054416 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.054416
8.
8. A. Yaouanc, P. Dalmas de Réotier, P. C. M. Gubbens, C. T. Kaiser, A. A. Menovsky, M. Mihalik, and S. P. Cottrell, Phys. Rev. Lett. 89, 147001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.147001
9.
9. S. Sakarya, P. C. M. Gubbens, A. Y. Yaouanc, P. D. de Réotier, D. Andreica, A. Amato, U. Zimmermann, N. H. van Dijk, E. Brück, Y. Huang, and T. Gortenmulder, Phys. Rev. B 81, 024429 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.024429
10.
10. R. Tróc, Z. Gajek, and A. Pikul, Phys. Rev. B 86, 224403 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.224403
11.
11. H. Suhl, Phys. Rev. Lett. 87, 167007 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.167007
12.
12. A. A. Abrikosov, J. Phys. Condens. Matter 13, L943 (2001).
http://dx.doi.org/10.1088/0953-8984/13/48/104
13.
13. A. B. Shick, Phys. Rev. B 65, 180509 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.180509
14.
14. L. C. Davis and S. H. Liu, Phys. Rev. 163, 503 (1967).
http://dx.doi.org/10.1103/PhysRev.163.503
15.
15. C. Kittel, Quantum Theory of Solids (John Wiley, 1963).
16.
16. Y.-R. Lee, T. T. Wang, T. M. Rvachov, J.-H. Choi, W. Ketterle, and M.-S. Heo, Phys. Rev. A 87, 043629 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.043629
17.
17. C. Kittel, Introduction to Solid State Physics, (Wiley-VCH, 2005).
18.
18.The DFT code, OPENMX, is available at http://www.openmx-square.org under the GNU General Public License.
19.
19. T. Ozaki, Phys. Rev. B 67, 15 (2003).
20.
20. A. B. Shick, V. Janiš, and V. Drchal, Phys. Rev. B 70, 134506 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.134506
21.
21. V. I. Anisimov, Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation, (Gordon and Breach, New York);
21.V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997), and references therein.
http://dx.doi.org/10.1088/0953-8984/9/4/002
22.
22. J. Rusz and M. Divi, J. Phys.: Condens. Matter 16, 6675 (2004);
http://dx.doi.org/10.1088/0953-8984/16/37/004
22.V. N. Antonov, B. N. Harmon and A. N. Yaresko, J. Phys.: Condens. Matter 19, 186222 (2007).
http://dx.doi.org/10.1088/0953-8984/19/18/186222
23.
23. M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 73, 045110 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.045110
24.
24. T. Ozaki, Phys. Rev. B 67, 155108 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155108
25.
25. N. Troullier and J. L. Martine, Phys. Rev. B 43, 1993 (1991).
http://dx.doi.org/10.1103/PhysRevB.43.1993
26.
26. T. Ozaki, Phys. Rev. B 67, 155108 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155108
27.
27. T. Ozaki and H. Kino, Phys. Rev. B 69, 195113 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.195113
28.
28. P. E. Blöchl, Phys. Rev. B 41, 5414 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.5414
29.
29. J. Junquera, O. Paz, D. Sanchez-Portal, and E. Artacho, Phys. Rev. B 64, 235111 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.235111
30.
30. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys. Condens. Matter 14, 2745 (2002).
http://dx.doi.org/10.1088/0953-8984/14/11/302
31.
31. K. Oikawa, T. Kamiyama, H. Asano, Y. Onuki, and M. Kohgi, J. Phys. Soc. Jap. 65, 3229 (1996).
http://dx.doi.org/10.1143/JPSJ.65.3229
32.
32. A. Menovsky, F. R. de Boer, P. H. Frings, and J. J. M. Franse, in High Field Magnetism (North–Holland, Amsterdam, 1983).
33.
33. P. Boulet, A. Daoudi, M. Potel, H. Noël, G. M. Gross, G. André, F. Bourée, J. Alloy. Compd. 247, 104 (1997).
http://dx.doi.org/10.1016/S0925-8388(96)02600-X
34.
34. D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, and C. Paulsen, Nature 413, 613 (2001).
http://dx.doi.org/10.1038/35098048
35.
35. V. H. Tran, R. Troc´, and G. Andre, J. Magn. Magn. Mater. 186, 81 (1998).
http://dx.doi.org/10.1016/S0304-8853(98)00074-2
36.
36. K. Prokeš, T. Tahara, Y. Echizen, T. Takabatake, T. Fujita, I. H. Hagmusa, J. C. P. Klaasse, E. Brück, F. R. de Boer, M. Diviš, and V. Sechovský, Physica B 311, 220 (2002).
http://dx.doi.org/10.1016/S0921-4526(01)01037-7
37.
37. H. Yamagami, J. Phys. Condens. Matter 15, S2271 (2003).
http://dx.doi.org/10.1088/0953-8984/15/28/367
38.
38. N. Karchev, arXiv:1005.2032 [cond-mat.str-el];
38.N. Tateiwa, T. Kobayashi, K. Hanazono, K. Amaya, Y. Haga, R. Settai, and Y. Onuki, J. Phys. Condens. Matter 13, L17 (2001);
http://dx.doi.org/10.1088/0953-8984/13/1/103
38.C. Pfleiderer and A. D. Huxley, Phys. Rev. Lett., 89, 147005 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.147005
39.
39. N. Tateiwa, Y. Haga, T. D. Matsuda, E. Yamamoto, and Z. Fisk, Phys. Rev. B 89, 064420 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.064420
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893472
Loading
/content/aip/journal/adva/4/8/10.1063/1.4893472
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4893472
2014-08-15
2014-10-21

Abstract

Identification of pairing mechanism leading to ferromagnetic superconductivity is one of the most challenging issues in condensed matter physics. Although different models have been proposed to explain this phenomenon, a quantitative understanding about this pairing is yet to be achieved. Using the localized-itinerant model, we find that in ferromagnetic superconducting materials both triplet pairing and singlet pairing of electrons are possible through magnon exchange depending upon whether the Debye cut off frequency of magnons is greater or lesser than the Hund's coupling () multiplied by average spin () per site. Taking into account the repulsive interaction due to the existence of paramagnons, we also find an expression for effective interaction potential between a pair of electrons with opposite spins. We apply the developed formalism in case of UGe and URhGe. The condition of singlet pairing is found to be fulfilled in these cases, as was previously envisaged by Suhl [Suhl, Phys. Rev. Lett.87, 167007 (2001)]. We compute the critical temperatures of URhGe at ambient pressure and of UGe under different pressures for the first time through BCS equation. Thus, this work outlines a very simple way to evaluate critical temperature in case of a superconducting system. A close match with the available experimental results strongly supports our theoretical treatment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4893472.html;jsessionid=42kgaiapkq4kb.x-aip-live-02?itemId=/content/aip/journal/adva/4/8/10.1063/1.4893472&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: On magnon mediated Cooper pair formation in ferromagnetic superconductors
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893472
10.1063/1.4893472
SEARCH_EXPAND_ITEM