Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. M. Woynarowski, S. Faivre, M. C. S. Herzig, B. Arnett, W. G. Chapman, A. V. Trevino, E. Raymond, S. G. Chaney, A. Vaisman, M. Varchenko, and P. E. Juniewicz, Mol. Pharmacol. 58 (5), 920 (2000).
2. E. R. Jamieson and S. J. Lippard, Chem. Rev. 99 (9), 2467 (1999).
3. X. M. Hou, X. H. Zhang, K. J. Wei, C. Ji, S. X. Dou, W. C. Wang, M. Li, and P. Y. Wang, Nucleic Acids Res. 37 (5), 1400 (2009).
4. W. Li, Z. Q. Sun, P. Xie, S. X. Dou, W. C. Wang, and P. Y. Wang, Phys. Rev. E 85 (2), 021918 (2012).
5. N. K. Lee, J. S. Park, A. Johner, S. Obukhov, J. Y. Hyon, K. J. Lee, and S. C. Hong, Phys. Rev. Lett. 101(24), 248101 (2008).
6. C. Ji, L. Y. Zhang, and P. Y. Wang, Phys. Rev. E 88(4), 042703 (2013).
7. G. B. Onoa, G. Cervantes, V. Moreno, and M. J. Prieto, Nucleic Acids Res. 26(6), 1473 (1998).
8. K. H. Lee, M. S. Hyun, H. K. Kim, H. M. Jin, J. Yang, H. S. Song, Y. R. Do, H. M. Ryoo, J. S. Chung, D. Y. Zang, H. Y. Lim, J. Y. Jin, C. Y. Yim, H. S. Park, J. S. Kim, C. H. Sohn, and S. N. Lee, Cancer Res. Treat. 41(1), 12 (2009).
9. N. K. Kim, T. Y. Kim, S. G. Shin, Y. I. Park, J. A. Lee, Y. B. Cho, K. H. Kim, D. K. Kim, D. S. Heo, and Y. J. Bang, Cancer 91(8), 1549 (2001).<1549::AID-CNCR1164>3.0.CO;2-2
10. J. H. Ahn, Y. K. Kang, T. W. Kim, H. Bahng, H. M. Chang, W. C. Kang, W. K. Kim, J. S. Lee, and J. S. Park, Cancer Chemoth. Pharm. 50(2), 104 (2002).
11. Y. J. Min, S. J. Bang, J. W. Shin, D. H. Kim, J. H. Park, G. Y. Kim, B. K. Ko, D. H. Choi, and H. R. Cho, J. Korean Med. Sci. 19(3), 369 (2004).
12. J. Reedijk and P. H. M. Lohman, Pharm. Weekblad 7(5), 173 (1985).
13. A. M. Di Francesco, A. Ruggiero, and R. Riccardi, Cell. Mol. Life Sci. 59(11), 1914 (2002).
14. D. Esteban-Fernandez, E. Moreno-Gordaliza, B. Canas, M. A. Palacios, and M. M. Gomez-Gomez, Metallomics 2(1), 19 (2010).
15. W. R. Leopold, R. P. Batzinger, E. C. Miller, J. A. Miller, and R. H. Earhart, Cancer Res. 41, 4368 (1981).
16. Z. H. Siddik, S. Al-Baker, T. L. Burditt, and A. R. Khokhar, J. Cancer Res. Clin. 120(1–2), 12 (1993).
17. L. Pendyala, Y. Kidani, R. Perez, J. Wilkes, R. J. Bernacki, and P. J. Creaven, Cancer Lett. 97(2), 177 (1995).
18. J. F. Vollano, S. Al-Baker, J. C. Dabrowiak, and J. E. Schurig, J. Med. Chem. 30(4), 716 (1987).
19. F. P. Fanizzi, F. P. Intini, L. Maresca, G. Natile, and R. Quaranta, Inorg. Chim. Acta 137(1–2), 45 (1987).
20. Z. H. Siddik, S. Al-Baker, G. Thai, and A. R. Khokhar, J. Cancer Res. Clin. 120(7), 409 (1994).
21. K. Inagaki and Y. Kidani, Inorg. Chem. 25 (1), 1 (1986).
22. J. Malina, O. Novakova, M. Vojtiskova, G. Natile, and V. Brabec, Biophys. J. 93(11), 3950 (2007).
23. K. Inagaki, H. Nakahara, M. Alink, and Y. Kidani, Inorg. Chem. 29(22), 4496 (1990).
24. J. Reedijk, P. Natl. Acad. Sci. USA 100(7), 3611 (2003).
25. H. Y. Zhang, Y. R. Liu, C. Ji, W. Li, S. X. Dou, P. Xie, W. C. Wang, L. Y. Zhang, and P. Y. Wang, Plos One 8(8), e71556 (2013).
26. Y. B. Wu, P. Pradhan, J. Havener, G. Boysen, J. A. Swenberg, S. L. Campbell, and S. G. Chaney, J. Mol. Biol. 341(5), 1251 (2004).
27. A. Gelasco and S. J. Lippard, Biochemistry-Us 37(26), 9230 (1998).
28. P. M. Takahara, A. C. Rosenzweig, C. A. Frederick, and S. J. Lippard, Nature 377(6550), 649 (1995).
29. B. Spingler, D. A. Whittington, and S. J. Lippard, Inorg. Chem. 40(22), 5596 (2001).
30. M. Coluccia, M. Correale, D. Giordano, M. A. Mariggio, S. Moscelli, F. P. Fanizzi, G. Natile, and L. Maresca, Inorg. Chim. Acta 123 (4), 225 (1986).
31. J. Reedijk, Inorg. Chim. Acta 198, 873 (1992).

Data & Media loading...


Article metrics loading...



Heptaplatin is a third-generation platinum antitumor drug. It has a chiral isomer. We studied the interactions between the two isomers and DNA by using magnetic tweezers and atomic force microscopy (AFM) to investigate the effect of chiralities of the isomers on the interactions. We found that the extension curves and average condensation rates of DNA molecules incubated with heptaplatin were nearly the same as those incubated with its chiral isomer. In addition, the structures of DNA molecules incubated with heptaplatin were also similar to those incubated with its chiral isomer. These results indicate the difference in chirality of the two isomers does not induce different interactions of the isomers with DNA. Our study may facilitate the understanding of interactions of platinum complexes with DNA and the design of new antitumor platinum complexes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd