Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4893770
1.
1. A. Ulbrichta, J. L. Duchateau, W. H. Fietz, D. Ciazynski et al., Fusion Engineering and Design 73, 189327 (2005).
http://dx.doi.org/10.1016/j.fusengdes.2005.07.002
2.
2. A. Devred, I. Backbier, D. Bessette, G. Bevillard, M. Gardner, C. Jong, F. Lillaz, N. Mitchell, G. Romano, and A. Vostner, Superconductor Science and Technology 27, 044001 (2014).
http://dx.doi.org/10.1088/0953-2048/27/4/044001
3.
3. N. Amemiya, K. Miyamoto, N. Banno, and O. Tsukamoto, IEEE Transactions on Applied Superconductivity 7, 21102113 (1997).
http://dx.doi.org/10.1109/77.621008
4.
4. N. Amemiya, K. Miyamoto, S.-i. Murasawa, H. Mukai, and K. Ohmatsu, Physica C: Superconductivity 310, 3035 (1998).
http://dx.doi.org/10.1016/S0921-4534(98)00428-6
5.
5. T. Yazawa, J. J. Rabbers, B. ten Haken, H. H. J. ten Kate, and H. Maeda, Journal of Applied Physics 84, 5652 (1998).
http://dx.doi.org/10.1063/1.368825
6.
6. N. Banno and N. Amemiya, Journal of Applied Physics 85, 4243 (1999).
http://dx.doi.org/10.1063/1.370337
7.
7. N. Amemiya, S. Sato, and T. Ito, Journal of Applied Physics 100, 123907 (2006).
http://dx.doi.org/10.1063/1.2395679
8.
8. R. Brambilla, F. Grilli, and L. Martini, Superconductor Science and Technology 20, 1624 (2007).
http://dx.doi.org/10.1088/0953-2048/20/1/004
9.
9. Z. Hong, Q. Jiang, R. Pei, A. M. Campbell, and T. A. Coombs, Superconductor Science and Technology 20, 331337 (2007).
http://dx.doi.org/10.1088/0953-2048/20/4/006
10.
10. G. P. Lousberg, M. Ausloos, C. Geuzaine, P. Dular, P. Vanderbemden, and B. Vanderheyden, Superconductor Science and Technology 22, 055005 (2009).
http://dx.doi.org/10.1088/0953-2048/22/5/055005
11.
11. K. Kajikawa, T. Kawano, R. Osaka, T. Nakamura, M. Sugano, M. Takahashi, and T. Wakuda, Superconductor Science and Technology 23, 045026 (2010).
http://dx.doi.org/10.1088/0953-2048/23/4/045026
12.
12. Y. A. Genenko, H. Rauh, and P. Krüger, Applied Physics Letters 98, 152508 (2011).
http://dx.doi.org/10.1063/1.3560461
13.
13. M. D. Ainslie, V. M. Rodriguez-Zermeno, Z. Hong, W. Yuan, T. J. Flack, and T. A. Coombs, Superconductor Science and Technology 24, 045005 (2011).
http://dx.doi.org/10.1088/0953-2048/24/4/045005
14.
14. M. Zhang and T. A. Coombs, Superconductor Science and Technology 25, 015009 (2012).
http://dx.doi.org/10.1088/0953-2048/25/1/015009
15.
15. F. Grilli, R. Brambilla, F. Sirois, A. Stenvall, and S. Memiaghe, Cryogenics 53, 142147 (2013).
http://dx.doi.org/10.1016/j.cryogenics.2012.03.007
16.
16. H. Rauh and G. T. Ma, Journal of Applied Physics 114, 193902 (2013).
http://dx.doi.org/10.1063/1.4827176
17.
17. M. Lyly, V. Zermeno, A. Stenvall, V. Lahtinen, and R. Mikkonen, IEEE Transactions on Applied Superconductivity 23, 6000105 (2013).
http://dx.doi.org/10.1109/TASC.2012.2228532
18.
18. W. Ta, Y. Li, and Y. Gao, Physica C: Superconductivity 495, 118125 (2013).
http://dx.doi.org/10.1016/j.physc.2013.09.001
19.
19. N. Mitchell, Cryogenics 42, 311325 (2002).
http://dx.doi.org/10.1016/S0011-2275(02)00041-3
20.
20. N. Mitchell, Cryogenics 43, 255270 (2003).
http://dx.doi.org/10.1016/S0011-2275(03)00043-2
21.
21. A. Nijhuis, R. P. Pompe van Meerdervoort, H. J. G. Krooshoop, W. A. J. Wessel, C. Zhou, G. Rolando, C. Sanabria, P. J. Lee, D. C. Larbalestier, A. Devred, A. Vostner, N. Mitchell, Y. Takahashi, Y. Nabara, T. Boutboul, V. Tronza, S. H. Park, and W. Yu, Superconductor Science and Technology 26, 084004 (2013).
http://dx.doi.org/10.1088/0953-2048/26/8/084004
22.
22. A. Nijhuis, IEEE Transactions on Applied Superconductivity 15, 34663469 (2005).
http://dx.doi.org/10.1109/TASC.2005.849060
23.
23. A. Torre, D. Ciazynski, D. Durville, H. Bajas, and A. Nijhuis, IEEE Transactions on Applied Superconductivity 23, 8401005 (2013).
http://dx.doi.org/10.1109/TASC.2013.2243494
24.
24. J. W. Ekin, Journal of Applied Mechanics 49, 34063409 (1978).
25.
25. J. W. Ekin, Cryogenics 20, 611624 (1980).
http://dx.doi.org/10.1016/0011-2275(80)90191-5
26.
26. D. Ciazynski and A. Torre, Superconductor Science and Technology 23, 125005 (2010).
http://dx.doi.org/10.1088/0953-2048/23/12/125005
27.
27. N. Koizumi, H. Murakami, T. Hemmi, and H. Nakajima, Superconductor Science and Technology 24, 055009 (2011).
http://dx.doi.org/10.1088/0953-2048/24/5/055009
28.
28. X. F. Gou and Q. Shen, Physica C 475, 59 (2012).
http://dx.doi.org/10.1016/j.physc.2012.01.009
29.
29. Y. X. Li, W. R. Ta, Y. W. Gao, and Y. H. Zhou, Physica C: Superconductivity 489, 2531 (2013).
http://dx.doi.org/10.1016/j.physc.2013.03.052
30.
30. Y. Li, W. Ta, and Y. Gao, Cryogenics 58, 2025 (2013).
http://dx.doi.org/10.1016/j.cryogenics.2013.08.002
31.
31. E. Y. Klimenko, V. R. Chechetkin, R. R. Khayrutdinov, and S. G. Solodovnikov, Cryogenics 50, 359365 (2010).
http://dx.doi.org/10.1016/j.cryogenics.2010.03.001
32.
32. J. Rhyner, Physica C: Superconductivity 212, 292300 (1993).
http://dx.doi.org/10.1016/0921-4534(93)90592-E
33.
33. Y. Li, T. Yang, Y. Zhou, and Y. Gao, Cryogenics 62, 1430 (2014).
http://dx.doi.org/10.1016/j.cryogenics.2014.03.020
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893770
Loading
/content/aip/journal/adva/4/8/10.1063/1.4893770
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4893770
2014-08-20
2016-12-04

Abstract

We build a 3D model to analyze the electromagnetic behaviors of Nb Sn filamentary strand exposed to a time-varying current injection, under the consideration of value and strain effect. Electromagnetic behaviors, performance degradation and AC loss are investigated. Results show that the filament bundles prevent a further field penetration from the outer shell into the interior matrix. Different current/field profiles occur in the strand and outside. Compared to the critical current, the average transport current keeps a high value with little change over a broader strain range, and has a larger magnitude by several orders of magnitude. Increasing the strain results in a suppression of the current transport capacity, and part of the current is expelled into the metal matrix causing larger AC loss. The larger twist pitch implies a longer current circuit and more magnetic flux enclosed, thus increasing the loss. More details are presented in the paper.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4893770.html;jsessionid=6TFE0hMbuQr4s_VEtLT2qP-3.x-aip-live-03?itemId=/content/aip/journal/adva/4/8/10.1063/1.4893770&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4893770&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4893770'
Right1,Right2,Right3,