Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Ulbrichta, J. L. Duchateau, W. H. Fietz, D. Ciazynski et al., Fusion Engineering and Design 73, 189327 (2005).
2. A. Devred, I. Backbier, D. Bessette, G. Bevillard, M. Gardner, C. Jong, F. Lillaz, N. Mitchell, G. Romano, and A. Vostner, Superconductor Science and Technology 27, 044001 (2014).
3. N. Amemiya, K. Miyamoto, N. Banno, and O. Tsukamoto, IEEE Transactions on Applied Superconductivity 7, 21102113 (1997).
4. N. Amemiya, K. Miyamoto, S.-i. Murasawa, H. Mukai, and K. Ohmatsu, Physica C: Superconductivity 310, 3035 (1998).
5. T. Yazawa, J. J. Rabbers, B. ten Haken, H. H. J. ten Kate, and H. Maeda, Journal of Applied Physics 84, 5652 (1998).
6. N. Banno and N. Amemiya, Journal of Applied Physics 85, 4243 (1999).
7. N. Amemiya, S. Sato, and T. Ito, Journal of Applied Physics 100, 123907 (2006).
8. R. Brambilla, F. Grilli, and L. Martini, Superconductor Science and Technology 20, 1624 (2007).
9. Z. Hong, Q. Jiang, R. Pei, A. M. Campbell, and T. A. Coombs, Superconductor Science and Technology 20, 331337 (2007).
10. G. P. Lousberg, M. Ausloos, C. Geuzaine, P. Dular, P. Vanderbemden, and B. Vanderheyden, Superconductor Science and Technology 22, 055005 (2009).
11. K. Kajikawa, T. Kawano, R. Osaka, T. Nakamura, M. Sugano, M. Takahashi, and T. Wakuda, Superconductor Science and Technology 23, 045026 (2010).
12. Y. A. Genenko, H. Rauh, and P. Krüger, Applied Physics Letters 98, 152508 (2011).
13. M. D. Ainslie, V. M. Rodriguez-Zermeno, Z. Hong, W. Yuan, T. J. Flack, and T. A. Coombs, Superconductor Science and Technology 24, 045005 (2011).
14. M. Zhang and T. A. Coombs, Superconductor Science and Technology 25, 015009 (2012).
15. F. Grilli, R. Brambilla, F. Sirois, A. Stenvall, and S. Memiaghe, Cryogenics 53, 142147 (2013).
16. H. Rauh and G. T. Ma, Journal of Applied Physics 114, 193902 (2013).
17. M. Lyly, V. Zermeno, A. Stenvall, V. Lahtinen, and R. Mikkonen, IEEE Transactions on Applied Superconductivity 23, 6000105 (2013).
18. W. Ta, Y. Li, and Y. Gao, Physica C: Superconductivity 495, 118125 (2013).
19. N. Mitchell, Cryogenics 42, 311325 (2002).
20. N. Mitchell, Cryogenics 43, 255270 (2003).
21. A. Nijhuis, R. P. Pompe van Meerdervoort, H. J. G. Krooshoop, W. A. J. Wessel, C. Zhou, G. Rolando, C. Sanabria, P. J. Lee, D. C. Larbalestier, A. Devred, A. Vostner, N. Mitchell, Y. Takahashi, Y. Nabara, T. Boutboul, V. Tronza, S. H. Park, and W. Yu, Superconductor Science and Technology 26, 084004 (2013).
22. A. Nijhuis, IEEE Transactions on Applied Superconductivity 15, 34663469 (2005).
23. A. Torre, D. Ciazynski, D. Durville, H. Bajas, and A. Nijhuis, IEEE Transactions on Applied Superconductivity 23, 8401005 (2013).
24. J. W. Ekin, Journal of Applied Mechanics 49, 34063409 (1978).
25. J. W. Ekin, Cryogenics 20, 611624 (1980).
26. D. Ciazynski and A. Torre, Superconductor Science and Technology 23, 125005 (2010).
27. N. Koizumi, H. Murakami, T. Hemmi, and H. Nakajima, Superconductor Science and Technology 24, 055009 (2011).
28. X. F. Gou and Q. Shen, Physica C 475, 59 (2012).
29. Y. X. Li, W. R. Ta, Y. W. Gao, and Y. H. Zhou, Physica C: Superconductivity 489, 2531 (2013).
30. Y. Li, W. Ta, and Y. Gao, Cryogenics 58, 2025 (2013).
31. E. Y. Klimenko, V. R. Chechetkin, R. R. Khayrutdinov, and S. G. Solodovnikov, Cryogenics 50, 359365 (2010).
32. J. Rhyner, Physica C: Superconductivity 212, 292300 (1993).
33. Y. Li, T. Yang, Y. Zhou, and Y. Gao, Cryogenics 62, 1430 (2014).

Data & Media loading...


Article metrics loading...



We build a 3D model to analyze the electromagnetic behaviors of Nb Sn filamentary strand exposed to a time-varying current injection, under the consideration of value and strain effect. Electromagnetic behaviors, performance degradation and AC loss are investigated. Results show that the filament bundles prevent a further field penetration from the outer shell into the interior matrix. Different current/field profiles occur in the strand and outside. Compared to the critical current, the average transport current keeps a high value with little change over a broader strain range, and has a larger magnitude by several orders of magnitude. Increasing the strain results in a suppression of the current transport capacity, and part of the current is expelled into the metal matrix causing larger AC loss. The larger twist pitch implies a longer current circuit and more magnetic flux enclosed, thus increasing the loss. More details are presented in the paper.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd