Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4893998
1.
1. L. You, B. Wang, X. Zou, Z. S. Lim, Y. Zhou, H. Ding, L. Chen, and J. Wang, Phys. Rev. B, 88, 184426 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.184426
2.
2. S. K. Mishra, D. Mazumdar, K. Tarafdar, L.-W. Wang, S. D. Kevan, C. Sanchez-Hanke, A. Gupta and S. Roy, New. J. Phys. 15, 113042 (2013).
http://dx.doi.org/10.1088/1367-2630/15/11/113042
3.
3. S. S. Rao, J. T. Prater, Fan Wu, C. T. Shelton, J.-P. Maria, and J. Narayan, Nano Lett., 13, 5814 (2014).
http://dx.doi.org/10.1021/nl4023435
4.
4. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom, and R. Ramesh, Nat. Mat., 5, 823 (2006).
http://dx.doi.org/10.1038/nmat1731
5.
5. Y. H. Chu, L. W. Martin, M. B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. F. -Rodriguez, A. Scholl, S. X. Wang, and R. Ramesh, Nat. Mat., 7, 478 (2008).
http://dx.doi.org/10.1038/nmat2184
6.
6. S. Majumdar and S. Dijken, J. Phys. D-Appl. Phys., 47, 034010 (2014).
http://dx.doi.org/10.1088/0022-3727/47/3/034010
7.
7. A. Dagotto, T. Hotta and A. Moreo, Phys. Rep. 344, 1 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
8.
8. J. Z. Sun, W. J. Gallagher, P. R. Duncombe, L. K.-Elbaum, R. A. Altman, A. Gupta, Y. Lu, G. Q. Gong, and G. Xiao, Appl. Phys. Lett., 69, 3266 (1996).
http://dx.doi.org/10.1063/1.118031
9.
9. J. Z. Sun, L. K.-Elbaum, P. R. Duncombe, A. Gupta, and R. B. Laibowitz, Appl. Phys. Lett., 70, 1769 (1997).
http://dx.doi.org/10.1063/1.118651
10.
10. T. Li, B. Wang, H. Dai, Y. Du, H. Yan, and Y. Liu, J. Appl. Phys., 98, 123505 (2005).
http://dx.doi.org/10.1063/1.2148621
11.
11. D. R. Sahua, D. K. Mishrab, J.-L. Huanga, B. K. Roul, Phys. B, 396, 75 (2007).
http://dx.doi.org/10.1016/j.physb.2007.03.016
12.
12. P. M. Leufke, A. K. Mishra, A. Beck, D. Wang, C. Kübel, R. Kruk, H. Hahn, Thin Sol. Films, 520, 5521 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.04.064
13.
13. C. Ternon, J. Thery, T. Baron, C. Ducros, F. Sanchette, J. Kreisel, Thin Sol. Films, 515, 481 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.12.267
14.
14. R. Y. Zheng, X. S. Gao, Z. H. Zhou, and J. Wang, J. Appl. Phys. 101, 054104 (2007).
http://dx.doi.org/10.1063/1.2437163
15.
15. H. Liu, P. Yang, K. Yao, and J. Wang, Appl. Phy. Lett. 96, 012901 (2010).
http://dx.doi.org/10.1063/1.3276543
16.
16. H. Q. Li, Q. F. Fang, Z. G. Zhu, Mat. Res. Bull, 37, 859 (2002).
http://dx.doi.org/10.1016/S0025-5408(02)00717-1
17.
17. Swanson H. Fuyal, Natl. Bur. Stand. (US) Circ. 539, 44 (1954).
18.
18. T. Ichinose, H. Naganuma, T. Miyazaki, A. F. Begum, M. Oogane, and Y. Ando, Journal of Physics, submitted.
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4893998
Loading
/content/aip/journal/adva/4/8/10.1063/1.4893998
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4893998
2014-08-22
2016-12-10

Abstract

BiFeO (BFO) and LaSrMnO (LSMO) films were epitaxially grown on SrTiO (100) substrates by r.f. magnetron sputtering with various oxygen gas flow ratios ( ). Compositional ratios of each atom in both of BFO and LSMO could be controlled kept to around 10 at.% by changing . Adjusting the compositional ratio to LaSrMnO not only increase of LSMO but also produces sufficient oxygen to form a perovskite lattice. For an LSMO/BFO heterostructure, detailed observation by cross sectional transmission electron microscopy (TEM) revealed that the lattice of rhombohedral (SG: -3c) LSMO was shrank by a clamping effect from the SrTiO substrates, and then the BFO was grown in two layers: (i) an interfacial BFO layer (7 nm thick) with evenly shrunk -axis and -axis, and (ii) an upper BFO layer (25 nm thick) expanded along the -axis. Neither misfit strain nor dislocations appeared at the interface between the shrunken BFO and LSMO layers, and these heterostructures did not show exchange bias. These results suggest that BFO is suitable for a tunneling barrier combine with LSMO electrode.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4893998.html;jsessionid=EcPJ6ceN4i8EUJfQ81MntI8m.x-aip-live-06?itemId=/content/aip/journal/adva/4/8/10.1063/1.4893998&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4893998&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4893998'
Right1,Right2,Right3,