Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. Kocabas, S. Dunham, Q. Cao, K. Cimino, X. Ho, H. Kim, D. Dawson, J. Payne, M. Stuenkel, and H. Zhang, Nano. Lett. 9, 1937 (2009).
2. O. S. Koswatta, A. Valdes-Garcia, M. B. Steiner, Y. M. Lin, and P. Avouris, IEEE Trans. on MW theory and Tech. 59, 2739 (2011).
3. P. Rice, T. M. Wallis, S. E. Russek, and P. Kabos, Nano. Lett. 7, 1086 (2007).
4. B. W. Smith and D. E. Luzzi, J. App. Phys. 90, 3509 (2001).
5. S. C. Jun, Nanotechnology 18, 255701 (2007).
6. J. Nygard, D. H. Cobden, M. Bockrath, P. L. McEuen, and P. E. Lindelef, Appl. Phys. A 69, 297 (1999).
7. M. Monteverde et al., Phys. Rev. Lett. 97, 1764011 (2006).
8. T. Kanbara, T. Takenobu, T. Takahashi, Y. Iwasa, K. Tsukagoshi, Y. Aoyagi, and H. Kataura, App. Phys. Lett. 88, 053118 (2006).
9. P. J. Burke, IEEE on NanoTech. 1, 129 (2002).
10. Ch. Caillier, A. Ayari, V. Gouttenoire, A. S. Miguel, V. Jourdain, M. Picher, and J. L. Sauvajol, App. Phys. Lett. 97, 173111 (2010).
11. D. Mann, A. Javey, J. Kong, Q. Wang, and H. Dai, Nano Lett. 3, 1541 (2003).
12. M. S. Haque, N. L. Rupensinghe, S. Z. Ali, I. Haneef, S. Maeng, J. Park, F. Udrea, and W. I. Milne, Nanotechnology 19, 025607 (2008).
13. J. J. Palacios, A. J. Perez-Jimenez, E. Louis, E. San Fabian, and J. A. Verges, Phys. Rev. Lett. 90, 106801 (2003).
14. S. Ilani, L. A. K. Donev, M. Kindermann, and P. L. McEuen, Nature. Phys. 2, 687 (2006).
15. Q. Liang, J. D. Cressler, G. Niu, Y. Lu, G. Freeman, D. C. Ahlgren, R. M. Malladi, K. Newton, and D. L. Harame, IEEE Trans on Microwave theory and Tech. 51, 2165 (2003).
16. S. Dattta, Electrical transport in Mesoscopic systems (Cambridge University Press, Cambridge UK 1995).
17. P. Poncharal, C. Berger, Y. Yi, Z. L. Wang, and W. A. de Heer, J. Phys. Chem. B 106, 12104 (2002).
18. C. Highstrete, E. A. Shaner, M. Lee, F. E. Jones, P. M. Dentinger, and A. A. Talin, App. Phys. Lett. 89, 173105 (2006).

Data & Media loading...


Article metrics loading...



High frequency characterisation of platinum and tungsten contacts on individual multi-walled carbon nanotubes (MWNT) is performed from 10 MHz to 50 GHz. By measuring the scattering parameters of aligned individual MWNTs, we show that metal contacts enhance an inductive response due to the improved MWNT-electrode coupling reducing the capacitive effect. This behaviour is pronounced in the frequency below 10 GHz and strong for tungsten contacts. We explain the inductive response as a result of the interaction of stimulus current with the localized (or defects) states present at the contact region resulting in the current lagging behind the voltage. The results are further supported by direct current measurements that show tungsten to significantly increase carbon nanotube-electrode coupling. The immediate consequence is the reduction of the contact resistance, implying a reduction of electron tunnelling barrier from the electrode to the carbon nanotube.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd