Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. Bao, J. Locklin, Organic Field-Effect Transistors (CRC Press, Taylor & Francis Group, New York, 2007).
2. T. Someya, T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, and T. Sakurai, Science 326, 1516 (2009).
3. G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Adv. Mater. 22, 3778 (2010).
4. R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva Filho, J. L. Bredas, L. L. Miller, K. R. Mann, and C. D. Frisbie, J. Phys. Chem. B 108, 19281 (2004).
5. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, and J. L. Bredas, Chem. Rev. 107, 926 (2007).
6. R. P. Ortiz, A. Facchetti, and T. J. Marks, Chem. Rev. 110, 205 (2010).
7. P. Fontaine, D. Goguenheim, D. Deresmes, D. Vuillaume, M. Garet, and F. Rondelez, Appl. Phys. Lett. 62, 2256 (1993).
8. M. H. Yoon, A. Facchetti, and T. J. Marks, Proc. Natl. Acad. Sci. USA 102, 4678 (2005).
9. M. H. Yoon, H. Yan, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 127, 103880 (2005).
10. W. H. Ha, M. H. Choo, and S. Im, J. Non-Cryst. Solids 303, 78 (2002).
11. L. A. Majewski, R. Schroeder, and M. Grell, Adv. Mater. 17, 192 (2005).
12. J. M. Kim, J. W. Lee, J. K. Kim, B. K. Ju, J. S. Kim, Y. L. Lee, and M. H. Oh, Appl. Phys. Lett. 85, 6368 (2004).
13. S. J. Kang, K. B. Chung, D. S. Park, H. J. Kim, Y. K. Choi, M. H. Jang, M. Noh, and C. N. Whang, Synth. Met. 146, 351 (2004).
14. S. W. Cho, J. G. Jeong, S. H. Park, M. H. Cho, K. Jeong, C. N. Whang, and Y. Yi, Appl. Phys. Lett. 92, 213302 (2008).
15. C. Bartic, H. Jansen, A. Campitelli, and S. Borghs, Org. Electron. 3, 65 (2002).
16. C. Maunoury, K. Dabertrand, E. Martinez, and M. Saadoune, J. Appl. Phys. 101, 034112 (2007).
17. X. L. Li, K. Chen, Y. Liu, Z. X. Wang, T. W. Wang, J. L. Zuo, Y. Z. Li, Y. Wang, J. S. Zhu, J. M. Liu, Y. Song, and X. Z. You, Angew. Chem. Int. Ed. 46, 6820 (2007).
18. Z. Bao, A. J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett. 69, 3066 (1996).
19.See supplementary material at for [The electrical characteristics of pentacene OFET with a 300 nm SiO2 as the gate insulator; Eu(tta)3L insulator exhibited a high leakage current, while PVA modification can significantly reduce the leakage current and improve the device performance; from the transfer curves of pentacene FET devices, the electrical performances have an order of Eu(tta)3L < Eu(tta)3L/PVA < Eu(tta)3L/PVA/OTS as gate insulators.]. [Supplementary Material]
20. M. McDowell, I. G. Hill, J. E. McDermott, S. L. Nernasek, and J. Schwartz, Appl. Phys. Lett. 88, 073505 (2006).
21. Q. Liu, Y. Li, X. Y. Wang, W. Huang, J. Ma, Y. Li, Y. Shi, X. Z. Wang, and Z. Hu, Org. Electron. 15, 1799 (2014).
22. A. L. Deman, M. Erouel, D. Lallemand, M. Phaner-Goutorbe, P. Lang, and J. Tardy, J. Non-Crystal. Solids 354, 1598 (2008).
23. L. Li, Q. Tang, H. Li, X. Yang, W. Hu, Y. Song, Z. Shuai, W. Xu, Y. Liu, and D. Zhu, Adv. Mater. 19, 2613 (2007).

Data & Media loading...


Article metrics loading...



A novel high- organometallic lanthanide complex, Eu(tta)L (tta=2-thenoyltrifluoroacetonate, L = 4,5-pinene bipyridine), is used as gate insulating material to fabricate low-voltage pentacene field-effect transistors (FETs). The optimized gate insulator exhibits the excellent properties such as low leakage current density, low surface roughness, and high dielectric constant. When operated under a low voltage of −5 V, the pentacene FET devices show the attractive electrical performance, e.g. carrier mobility ( ) of 0.17 cm2 V−1 s−1, threshold voltage ( ) of −0.9 V, on/off current ratio of 5 × 103, and subthreshold slope () of 1.0 V dec−1, which is much better than that of devices obtained on conventional 300 nm SiO substrate (0.13 cm2 V−1 s−1, −7.3 V and 3.1 V dec−1 for , and value when operated at −30 V). These results indicate that this kind of high- organometallic lanthanide complex becomes a promising candidate as gate insulator for low-voltage organic FETs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd