Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev. Lett. 96, 026402 (2006).
2. B. Huang, X. K. Cao, H. X. Jiang, J. Y. Lin, and S. H. Wei, Physical Review B 86, 155202 (2012).
3. X. K. Cao, B. Clubine, J. H. Edgar, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 103, 191106 (2013).
4. M. R. Uddin, S. Majety, J. Li, J. Y. Lin, and H. X. Jiang, J. Appl. Phys. 115, 093509 (2014).
5. S. Nakamura, G. Fasol, and S. J. Pearton, The Blue Laser Diode: The Complete Story, (Springer, New York, 2000).
6. J. Wu, J. Appl. Phys., 106, 011101 (2009).
7. M. O. Watanabe, S. Itoh, T. Sasaki, and K. Mizushima, Phys. Rev. Lett. 77, 187 (1996).
8. M. O. Watanabe, K. Mizushima, S. Itoh, and M. Mashita, “Semiconductor device using semiconductor BCN compounds,” U.S. patent 5,895, 938.
9. S. Umeda, T. Yuki, T. Sugiyama, and T. Sugino, Diamond Relat. Mater. 13, 1135 (2004).
10. M. O. Watanabe, S. Itoh, K. Mizushima, and T. Sasaki, J. Appl. Phys. 78, 2880 (1995).
11. D. Briggs and M. P. Seah, Practical surface analysis by Auger and X-ray photoelectron spectroscopy (Wiley, New York, 1990).
12. J. R. Martins and H. Chacham, ACS Nano 5, 385 (2011).
13. M. O. Watanabe, S. Itoh, K. Mizushima, and T. Sasaki, Appl. Phys. Lett. 68, 2962 (1996).
14. V. Linss, S. E. Rodil, P. Reinke, M. G. Garnier, P. Oelhafen, U. Kreissig, and F. Richter, Thin Solid Films 467, 76 (2004).
15. R. Dahal, J. Li, S. Majety, B. N. Pantha, X. K. Cao, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 98, 211110 (2011).
16. J. Li, S. Majety, R. Dahal, W. P. Zhao, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 101, 171112 (2012).
17. L. J. Van der Pauw, Philips Research Reports, 13, 1 (1958).
18. O. Bierwagen, T. Ive, C. G. Van de Walle, and J. S. Speck, Appl. Phys. Lett. 93, 242108 (2008).
19. A. Kumar, J. Pernot, F. Omnès, P. Muret, A. Traoré, L. Magaud, A. Deneuville, N. Habka, J. Barjon, F. Jomard, M. A. Pinault, J. Chevallier, C. Mer-Calfati, J. C. Arnault, and P. Bergonzo, J. Appl. Phys. 110, 033718 (2011).
20. S. Majety, T. C. Doan, J. Li, J. Y. Lin, and H. X. Jiang, AIP Advances 3, 122116 (2013).
21. Y. Taniyasu, M. Kasu, and T. Makimoto, Nature, 441, 325 (2006).
22. D. A. Shirley, Phys. Rev. B 5, 4709 (1972).
23. H. Kunzli, P. Gantenbein, R. Steiner, and P. Oelhafen, Anal. Chem. 346, 41 (1993).
24. H. A. Castillo, P. J. Arango, J. M. Velez, E. Restrepo-Parra, G. Soto, and W. D. la Cruz, Surf. Coat. Technol. 204, 4051 (2010).
25. J. Yue, W. Cheng, X. Zhang, D. He, and G. Chen, Thin Solid Films 375, 247 (2000).
26. E. G. Wang, Prog. Mater. Sci. 41, 241 (1997).
27. M. S. C. Mazzoni, R. W. Nunes, S. Azedevo, and H. Chacham, Phys. Rev. B 73, 073108 (2006).

Data & Media loading...


Article metrics loading...



The layer structured hexagonal boron nitride carbon semiconductor alloys, (BN)C, offer the unique abilities of bandgap engineering (from 0 for graphite to ∼6.4 eV for BN) and electrical conductivity control (from semi-metal for graphite to insulator for undoped BN) through alloying and have the potential to complement III-nitride wide bandgap semiconductors and carbon based nanostructured materials. Epilayers of (BN)-rich (BN) (C) alloys were synthesized by metal-organic chemical vapor deposition (MOCVD) on (0001) sapphire substrates. Hall-effect measurements revealed that homogeneous (BN)-rich (BN) (C) alloys are naturally n-type. For alloys with = 0.032, an electron mobility of about 20 cm2/Vs at 650 °K was measured. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition and analyze chemical bonding states. Both composition and chemical bonding analysis confirm the formation of alloys. XPS results indicate that the carbon concentration in the alloys increases almost linearly with the flow rate of the carbon precursor (propane (CH)) employed during the epilayer growth. XPS chemical bonding analysis showed that these MOCVD grown alloys possess more C-N bonds than C-B bonds, which possibly renders the undoped (BN) (C) alloys n-type and corroborates the Hall-effect measurement results.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd