Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. H. Martz, D. Alessi, B. M. Luther, Y. Wang, D. Kemp, M. Berrill, and J. J. Rocca, Opt. Lett. 35(10), 16321634 (2010).
2. P. Arpin, T. Popmintchev, N. L. Wagner, A. L. Lytle, O. Cohen, H. C. Kapteyn, and M. M. Murnane, Physical Review Letters 103(14), 143901 (2009).
3. M. Zhi and A. V. Sokolov, Physical Review A 80(2), 023415 (2009).
4. V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, Nat Phys 4(6), 447453 (2008).
5. K. Krushelnick and V. Malka, Laser & Photonics Reviews 4(1), 4252 (2010).
6. H. S. Uhm, I. Nam, M. S. Hur, and H. Suk, Current Applied Physics (2012).
7. S. Afhami and E. Eslami, Physics of Plasmas 21(6), (2014).
8. F. Jokar and E. Eslami, Optik - International Journal for Light and Electron Optics 123(21), 19471951 (2012).
9. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, and H. Okada, Optics letters 35(10), 14971499 (2010).
10. J. W. Yoon, S. K. Lee, T. J. Yu, J. H. Sung, T. M. Jeong, and J. Lee, Current Applied Physics 12(3), 648653 (2012).
11. Z. Toroker, V. Malkin, and N. Fisch, Physical Review Letters 109(8), 085003 (2012).
12. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, Physical Review Letters 103(18), 183901 (2009).
13. D. Strickland and G. Mourou, Optics Communications 56(3), 219221 (1985).
14. E. Esarey, C. B. Schroeder, and W. P. Leemans, Reviews of Modern Physics 81(3), 12291285 (2009).
15. S. Y. Kalmykov, L. M. Gorbunov, P. Mora, and G. Shvets, Physics of Plasmas 13(11), 113102113111 (2006).
16. E. Esarey, P. Sprangle, J. Krall, and A. Ting, Plasma Science, IEEE Transactions on 24(2), 252288 (1996).
17. A. G. Khachatryan, F. A. van Goor, and K. J. Boller, Physical Review E 70(6), 067601 (2004).
18. A. G. Khachatryan, F. A. van Goor, J. W. J. Verschuur, and K. J. Boller, Physics of Plasmas 12(6), 062116062118 (2005).
19. C. Xiaoli and R. D. Murch, Wireless Communications, IEEE Transactions on 3(5), 14311436 (2004).
20. H. Shen, W. Zhang, and K. S. Kwak, ETRI journal 29(4), 521523 (2007).
21. E. Treacy, Annals of the New York Academy of Sciences 168(3), 400418 (1969).
22. J. A. Armstrong and E. Courtens, Quantum Electronics, IEEE Journal of 5(5), 249259 (1969).
23. J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, Physical Review Letters 78(25), 47734776 (1997).
24. E. B. Treacy, Physics Letters A 28(1), 3435 (1968).
25. X. Lavocat-Dubuis, F. Vidal, J.-P. Matte, C. Popovici, T. Ozaki and J.-C. Kieffer, Laser and Particle Beams 29(01), 95104 (2011).
26. R. K. Mishra and P. Jha, Laser and Particle Beams 29(02), 259263 (2011).
27. X. Zhang, B. Shen, L. Ji, W. Wang, J. Xu, Y. Yu, L. Yi, X. Wang, N. A. M. Hafz, and V. Kulagin, Physics of Plasmas 19(5), 053103053107 (2012).
28. T. W. Yau, C. J. Hsu, H. H. Chu, Y. H. Chen, C. H. Lee, J. Wang, and S. Y. Chen, Physics of Plasmas 9(2), 391394 (2002).
29. P. Jha, A. Malviya, and A. K. Upadhyay, Physics of Plasmas 16(6), 063106063105 (2009).
30. C. Tóth, J. Faure, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, E. Esarey, and W. P. Leemans, Opt. Lett. 28(19), 18231825 (2003).
31. C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Toth, B. A. Shadwick, J. van Tilborg, J. Faure, and W. P. Leemans, Physics of Plasmas 10(5), 20392046 (2003).
32. M. N. H. Pashaki, E. Eslami, and F. Mousavi, presented at the XIX International Symposium on High-Power Laser Systems and Applications, 86771J-8 (2013).
33. V. B. Pathak, J. Vieira, R. A. Fonseca, and L. O. Silva, New Journal of Physics 14(2), 023057 (2012).
34. B. S. Rao, A. Moorti, P. A. Naik, and P. D. Gupta, Physical Review Special Topics - Accelerators and Beams 16(9), 091301 (2013).
35. Y. I. Salamin, Physics Letters A 376(35), 24422445 (2012).

Data & Media loading...


Article metrics loading...



An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd