Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4894452
1.
1. D. H. Martz, D. Alessi, B. M. Luther, Y. Wang, D. Kemp, M. Berrill, and J. J. Rocca, Opt. Lett. 35(10), 16321634 (2010).
http://dx.doi.org/10.1364/OL.35.001632
2.
2. P. Arpin, T. Popmintchev, N. L. Wagner, A. L. Lytle, O. Cohen, H. C. Kapteyn, and M. M. Murnane, Physical Review Letters 103(14), 143901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.143901
3.
3. M. Zhi and A. V. Sokolov, Physical Review A 80(2), 023415 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.023415
4.
4. V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse, and K. T. Phuoc, Nat Phys 4(6), 447453 (2008).
http://dx.doi.org/10.1038/nphys966
5.
5. K. Krushelnick and V. Malka, Laser & Photonics Reviews 4(1), 4252 (2010).
http://dx.doi.org/10.1002/lpor.200810062
6.
6. H. S. Uhm, I. Nam, M. S. Hur, and H. Suk, Current Applied Physics (2012).
7.
7. S. Afhami and E. Eslami, Physics of Plasmas 21(6), (2014).
8.
8. F. Jokar and E. Eslami, Optik - International Journal for Light and Electron Optics 123(21), 19471951 (2012).
http://dx.doi.org/10.1016/j.ijleo.2011.09.022
9.
9. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, and H. Okada, Optics letters 35(10), 14971499 (2010).
http://dx.doi.org/10.1364/OL.35.001497
10.
10. J. W. Yoon, S. K. Lee, T. J. Yu, J. H. Sung, T. M. Jeong, and J. Lee, Current Applied Physics 12(3), 648653 (2012).
http://dx.doi.org/10.1016/j.cap.2011.09.013
11.
11. Z. Toroker, V. Malkin, and N. Fisch, Physical Review Letters 109(8), 085003 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.085003
12.
12. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, Physical Review Letters 103(18), 183901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.183901
13.
13. D. Strickland and G. Mourou, Optics Communications 56(3), 219221 (1985).
http://dx.doi.org/10.1016/0030-4018(85)90120-8
14.
14. E. Esarey, C. B. Schroeder, and W. P. Leemans, Reviews of Modern Physics 81(3), 12291285 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.1229
15.
15. S. Y. Kalmykov, L. M. Gorbunov, P. Mora, and G. Shvets, Physics of Plasmas 13(11), 113102113111 (2006).
http://dx.doi.org/10.1063/1.2363172
16.
16. E. Esarey, P. Sprangle, J. Krall, and A. Ting, Plasma Science, IEEE Transactions on 24(2), 252288 (1996).
http://dx.doi.org/10.1109/27.509991
17.
17. A. G. Khachatryan, F. A. van Goor, and K. J. Boller, Physical Review E 70(6), 067601 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.067601
18.
18. A. G. Khachatryan, F. A. van Goor, J. W. J. Verschuur, and K. J. Boller, Physics of Plasmas 12(6), 062116062118 (2005).
http://dx.doi.org/10.1063/1.1938167
19.
19. C. Xiaoli and R. D. Murch, Wireless Communications, IEEE Transactions on 3(5), 14311436 (2004).
http://dx.doi.org/10.1109/TWC.2004.833462
20.
20. H. Shen, W. Zhang, and K. S. Kwak, ETRI journal 29(4), 521523 (2007).
http://dx.doi.org/10.4218/etrij.07.0207.0018
21.
21. E. Treacy, Annals of the New York Academy of Sciences 168(3), 400418 (1969).
http://dx.doi.org/10.1111/j.1749-6632.1969.tb43127.x
22.
22. J. A. Armstrong and E. Courtens, Quantum Electronics, IEEE Journal of 5(5), 249259 (1969).
http://dx.doi.org/10.1109/JQE.1969.1075768
23.
23. J. M. Dias, C. Stenz, N. Lopes, X. Badiche, F. Blasco, A. Dos Santos, L. Oliveira e Silva, A. Mysyrowicz, A. Antonetti, and J. T. Mendonça, Physical Review Letters 78(25), 47734776 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4773
24.
24. E. B. Treacy, Physics Letters A 28(1), 3435 (1968).
http://dx.doi.org/10.1016/0375-9601(68)90584-7
25.
25. X. Lavocat-Dubuis, F. Vidal, J.-P. Matte, C. Popovici, T. Ozaki and J.-C. Kieffer, Laser and Particle Beams 29(01), 95104 (2011).
http://dx.doi.org/10.1017/S0263034610000807
26.
26. R. K. Mishra and P. Jha, Laser and Particle Beams 29(02), 259263 (2011).
http://dx.doi.org/10.1017/S0263034611000243
27.
27. X. Zhang, B. Shen, L. Ji, W. Wang, J. Xu, Y. Yu, L. Yi, X. Wang, N. A. M. Hafz, and V. Kulagin, Physics of Plasmas 19(5), 053103053107 (2012).
http://dx.doi.org/10.1063/1.4714610
28.
28. T. W. Yau, C. J. Hsu, H. H. Chu, Y. H. Chen, C. H. Lee, J. Wang, and S. Y. Chen, Physics of Plasmas 9(2), 391394 (2002).
http://dx.doi.org/10.1063/1.1430251
29.
29. P. Jha, A. Malviya, and A. K. Upadhyay, Physics of Plasmas 16(6), 063106063105 (2009).
http://dx.doi.org/10.1063/1.3157247
30.
30. C. Tóth, J. Faure, J. van Tilborg, C. G. R. Geddes, C. B. Schroeder, E. Esarey, and W. P. Leemans, Opt. Lett. 28(19), 18231825 (2003).
http://dx.doi.org/10.1364/OL.28.001823
31.
31. C. B. Schroeder, E. Esarey, C. G. R. Geddes, C. Toth, B. A. Shadwick, J. van Tilborg, J. Faure, and W. P. Leemans, Physics of Plasmas 10(5), 20392046 (2003).
http://dx.doi.org/10.1063/1.1560614
32.
32. M. N. H. Pashaki, E. Eslami, and F. Mousavi, presented at the XIX International Symposium on High-Power Laser Systems and Applications, 86771J-8 (2013).
33.
33. V. B. Pathak, J. Vieira, R. A. Fonseca, and L. O. Silva, New Journal of Physics 14(2), 023057 (2012).
http://dx.doi.org/10.1088/1367-2630/14/2/023057
34.
34. B. S. Rao, A. Moorti, P. A. Naik, and P. D. Gupta, Physical Review Special Topics - Accelerators and Beams 16(9), 091301 (2013).
http://dx.doi.org/10.1103/PhysRevSTAB.16.091301
35.
35. Y. I. Salamin, Physics Letters A 376(35), 24422445 (2012).
http://dx.doi.org/10.1016/j.physleta.2012.06.020
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4894452
Loading
/content/aip/journal/adva/4/8/10.1063/1.4894452
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4894452
2014-08-29
2016-12-07

Abstract

An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4894452.html;jsessionid=80nrVAevPp0_NBMTbxkOkLFT.x-aip-live-06?itemId=/content/aip/journal/adva/4/8/10.1063/1.4894452&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4894452&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4894452'
Right1,Right2,Right3,