Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nature Photonics 6, 591 (2012).
2. K. Tvingstedt and O. Inganas, Adv. Mater. 19, 2893 (2007).
3. Y. Xia, K. Sun, and J. Ouyang, Energy Environ. Sci. 5, 5325 (2012).
4. J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaneen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowsky, Appl. Phys.Lett. 88, 233503 (2006).
5. Z. Liu, J. Li, and F. Yan, Adv. Mater. 25, 4296 (2013).
6. D. Zhang, F. Xie, P. Lin, and W. C. H. Choy, ACS Nano. 7, 1740 (2013).
7. N. P. Sergeant, A. Hadipour, B. Niesen, D. Cheyns, P. Heremans, P. Peumans, and B. P. Rand, Adv. Mater. 24, 728 (2012).
8. W. Yu, L. Shen, F. Meng, Y. Long, S. Ruan, and W. Chen, Sol. Energy Mater. Sol. Cell 100, 226 (2012).
9. M. Kang, M. Kim, J. Kim, and L. J. Guo, Adv. Mater. 20, 4408 (2008).
10. N. C. Lindquist, W. A. Luhman, S. Oh, and R. J. Holmes, Appl. Phys. Lett. 93, 123308 (2008).
11. M. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, Adv. Mater. 22, 4378 (2010).
12. Z. Ye, S. Chaudhary, P. Kuang, and K. Ho, Opt. Express 20, 12214 (2012)
13. C. Min, J. Li, G. Veronis, J. Lee, S. Fan, and P. Peumans, Appl. Phys. Lett. 96, 133302 (2010).
14. I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K. S. Lee, Opt. Express 21, A669 (2013).
15. K. Q. Le and S. John, Opt. Express 22, A1 (2013).
16. J. Volakis, A. Chatterjee, and L. Kempel, Finite Element Method Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications (Wiley-IEEE Press, 1998)
17. H. Hoppe, N. Arnold, N. S. Sariciftci, and D. Meissner, Solar Energy Materials & Solar Cells 80, 105 (2003).
18. Y. B. Long, Sol. Energy Mater. Sol. Cells 94, 744 (2010).
19. A. J. Moule and K. Meerholz, Appl. Phys. B 86, 721 (2010).
20. Y. Chen, Y. B. Long, Y. T. Liu, L. Shen, Y. D. Zhang, Q. G. Deng, Z. S. Zheng, W. J. Yu, and S. P. Ruan, Appl. Phys. Lett. 103, 063301 (2013).
21. Y. B. Long, Appl. Phys. Lett. 98, 033301 (2011).
22. Y. B. Long, B. W. Li, Y. X. Li, W. H. Zheng, Q. W. Wang, and R. M. Su, J. Mod.Opt. 61, 943 (2014).
23.See supplemental material at for details of resonance effects of the microvavity within the grating-based OSCs. [Supplementary Material]
24. P. Zilio, D. Sammito, G. Zacco, M. Mazzeo, G. Gigli, and F. Romanato, Opt. Express 20, A476 (2012).
25. H. Shen and B. Maes, Opt. Express 19, A1202 (2011).
26. Y. B. Long, Appl. Phys. Lett. 95, 193301 (2009).
27. Y. B. Long, Sol. Energ. Mater. Sol. Cells 95, 3400 (2011).
28. H. Chalabi, D. Schoen, and M. L. Brongersma, Nano Lett. 14, 1374 (2014).

Data & Media loading...


Article metrics loading...



Theoretical simulations are performed to investigate optical performance of organic solar cells with Ag grating electrode. It is demonstrated that optical absorption for both transverse-electric (TE) polarized and transverse-magnetic(TM) polarized light is simultaneously improved when compared with that for the device without the Ag grating. The improvement is respectively attributed to the resonance and the surface plasmon polaritons within the device. After an additional WO layer is capped on the Ag grating, absorption of TE-polarized light is further improved due to resonance of double microcavities within the device, and absorption of TM-polarized light is improved by the combined effects of the microcavity resonance and the surface plasmon polaritons. Correspondingly, the short current density for randomly polarized light is improved by 18.1% from that of the device without the Ag grating. Finally, it is demonstrated that high transmission may not be an essential prerequisite for metallic gratings when they are used as transparent electrode since absorption loss caused by low transmission can be compensated by using a capping layer to optimize optical resonance of the WMC structure within the device.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd