Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/8/10.1063/1.4894486
1.
1. A. Lebon, P. Alder, C. Bernhard, A. V. Boris, A. V. Pimenov, A. Maljuk, C. T. Lin, C. Ulrich, and B. Keimer, Phy. Rev. Lett. 92, 037202 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.037202
2.
2. Y. Takeda, K. Kanno, T. Takada, O. Yamamoto, M. Takano, N. Nakayama, and Y. Bandol, J. Solid State Chemistry 63, 237 (1986).
http://dx.doi.org/10.1016/0022-4596(86)90174-X
3.
3. M. Takano, T. Okita, N. Nakayama, Y. Bando, Y. Takeda, O. Yamamoto, and J. B. Goodenough, J. Solid State Chemistry 73, 140 (1988).
http://dx.doi.org/10.1016/0022-4596(88)90063-1
4.
4. P. K. Gallagher, J. B. Mac Chesney, and D. N. E. Buchanan, J. Chem. Phys. 41, 2429 (1964).
http://dx.doi.org/10.1063/1.1726282
5.
5. J. P. Hodges, S. Short, J. D. Jorgensen, X. Xiong, B. Dabrowski, S. M. Mini, and C. W. Kimball, J. Solid State Chemistry 151, 190 (2000).
http://dx.doi.org/10.1006/jssc.1999.8640
6.
6. P. Adler, A. Lebon, V. Damljanovic, C. Ulrich, C. Bernhard, A. V. Boris, A. Maljuk, C. T. Lin, and B. Keimer, Phys. Rev. B 73, 094451 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094451
7.
7. M. Schmidt, M. Hofmann, and S. J. Campbell, J. Phys.: Condens. Matter 15, 8691 (2003).
http://dx.doi.org/10.1088/0953-8984/15/50/003
8.
8. A. Sendilkumar, P. D. Babu, M. Manivelraja, V. R. Reddy, A. Gupta, and S. Srinath, J. American Ceramic Society 96, 12392 (2013).
9.
9. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
10.
10. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957).
http://dx.doi.org/10.1103/PhysRev.105.904
11.
11. W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962).
http://dx.doi.org/10.1063/1.1728716
12.
12. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 03 (1992).
13.
13. A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00453-9
14.
14. O. Iglesias, A. Labarta, and X. Batlle, J. Nanosci. Nanotechnol. 8, 2761 (2008).
15.
15. S. Srinath, M. Mahesh Kumar, M. L. Post, and H. Srikanth, Phys. Rev. B 72, 054425 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.054425
16.
16. G. V. M. Williams, E. K. Hemery, and D. McCann, Phys. Rev. B 79, 024412 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.024412
17.
17. A. Sendilkumar, K. C. James Raju, P. D. Babu, and S. Srinath, Journal of Alloys and Compounds 561, 174 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.01.124
18.
18. A. Sendil Kumar, P. D. Babu, and S. Srinath, Journal of Applied Physics 115, 103904 (2014).
http://dx.doi.org/10.1063/1.4868158
19.
19. A. Sendil Kumar, P. D. Babu, and S. Srinath, Materials Research Bulletin 51, 332 (2014).
http://dx.doi.org/10.1016/j.materresbull.2013.12.039
20.
20. N. Haberkorn, S. Larrégola, D. Franco, and G. Nieva, J. Magn. Magn. Mater. 321, 1133 (2009).
http://dx.doi.org/10.1016/j.jmmm.2008.10.027
21.
21. R. H. Kodama, Salah A. Makhlouf, and A. E. Berkowitz, Phys. Rev. Lett 79, 1393 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1393
22.
22. Surface effects in magnetic nanoparticles edited by Dino Fiorani, (Springer, 2005).
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/8/10.1063/1.4894486
Loading
/content/aip/journal/adva/4/8/10.1063/1.4894486
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/8/10.1063/1.4894486
2014-08-29
2016-12-03

Abstract

Materials of Ti doped nanocrystalline SrFeO were synthesized through solid state reaction. Detailed magnetization measurements were carried out in zero field cooled (ZFC) and field cooled (FC) conditions. Compounds of SrFeTiO (x = 0.1 to 0.3) are found to be spin glass and parent compound is a helical antiferromagnet. Non magnetic Ti4+ reduces the strength of exchange interactions and the curvature of hysteresis is changed towards concave nature. Exchange bias is observed below the peak temperature (irreversibility in magnetization (T)) in ZFC-FC of SrFeTiO (x = 0 to 0.3). The coercivity and exchange bias field values are found to be decreases with increase in temperature. Observed exchange bias effect is attributed to competition between antiferromagnetic superexchange and ferromagnetic double exchange interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/8/1.4894486.html;jsessionid=U7ok-5T9pBFoacye8WlWfFNs.x-aip-live-02?itemId=/content/aip/journal/adva/4/8/10.1063/1.4894486&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/8/10.1063/1.4894486&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/8/10.1063/1.4894486'
Right1,Right2,Right3,