Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4894440
1.
1. M. C. Hersam, Nat. Nanotechnol. 3, 387 (2008).
http://dx.doi.org/10.1038/nnano.2008.135
2.
2. C. N. R. Rao, R. Voggu, and A. Govindaraj, Nanoscale 1, 96 (2009).
http://dx.doi.org/10.1039/b9nr00104b
3.
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
4.
4. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
5.
5. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
http://dx.doi.org/10.1126/science.1150878
6.
6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
7.
7. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
8.
8. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
http://dx.doi.org/10.1021/nl301702r
9.
9. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).
http://dx.doi.org/10.1021/nl302015v
10.
10. S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).
http://dx.doi.org/10.1021/nl303583v
11.
11. H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, Appl. Phys. Lett. 100, 123104 (2012).
http://dx.doi.org/10.1063/1.3696045
12.
12. W. Sik Hwang, M. Remskar, R. Yan, T. Kosel, J. Kyung Park, B. Jin Cho, W. Haensch, H. Xing, A. Seabaugh, and D. Jena, Appl. Phys. Lett. 102, 043116 (2013).
http://dx.doi.org/10.1063/1.4789975
13.
13. W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, Appl. Phys. Lett. 102, 042104 (2013).
http://dx.doi.org/10.1063/1.4789365
14.
14. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, Adv. Mater. 24, 2320 (2012).
http://dx.doi.org/10.1002/adma.201104798
15.
15. Y. Yang, H. E. Unalan, P. Hiralal, K. Chremmou, A. Teh, I. Alexandrou, R. Tenne, and G. A. J. Amaratunga, in IEEE Conf. Nanotechnol. (2008), pp. 8587.
16.
16. H. E. Unalan, Y. Yang, Y. Zhang, P. Hiralal, D. Kuo, S. Dalal, T. Butler, S. N. Cha, J. E. Jang, K. Chremmou, G. Lentaris, D. Wei, R. Rosentsveig, K. Suzuki, H. Matsumoto, M. Minagawa, Y. Hayashi, M. Chhowalla, A. Tanioka, W. I. Milne, R. Tenne, and G. A. J. Amaratunga, IEEE Trans. Electron Devices 55, 2988 (2008).
http://dx.doi.org/10.1109/TED.2008.2005166
17.
17. R. Levi, O. Bitton, G. Leitus, R. Tenne, and E. Joselevich, Nano Lett. 13, 3736 (2013).
http://dx.doi.org/10.1021/nl401675k
18.
18. M. Remskar, A. Mrzel, M. Virsek, M. Godec, M. Krause, A. Kolitsch, A. Singh, and A. Seabaugh, Nanoscale Res. Lett. 6, 26 (2011).
19.
19. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, Phys. Rev. Lett. 85, 146 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.146
20.
20. I. Milošević, B. Nikolić, E. Dobardžić, M. Damnjanović, I. Popov, and G. Seifert, Phys. Rev. B 76, 233414 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.233414
21.
21. R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature 360, 444 (1992).
http://dx.doi.org/10.1038/360444a0
22.
22. Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, Science 267, 222 (1995).
http://dx.doi.org/10.1126/science.267.5195.222
23.
23. A. Zak, L. Sallacan-Ecker, A. Margolin, Y. Feldman, R. Popovitz-Biro, A. Albu-Yaron, M. Genut, and R. Tenne, Fullerenes, Nanotub. Carbon Nanostructures 19, 18 (2010).
http://dx.doi.org/10.1080/1536383X.2010.488594
24.
24. M. Virsek, M. Krause, A. Kolitsch, A. Mrzel, I. Iskra, S. D. Skapin, and M. Remskar, J. Phys. Chem. C 114, 6458 (2010).
http://dx.doi.org/10.1021/jp101298g
25.
25. M. Rangus, M. Remškar, and A. Mrzel, Microelectronics J. 39, 475 (2008).
http://dx.doi.org/10.1016/j.mejo.2007.07.027
26.
26. M. Remškar, M. Viršek, and A. Mrzel, Appl. Phys. Lett. 95, 133122 (2009).
http://dx.doi.org/10.1063/1.3240892
27.
27. P. Lu, X. Wu, W. Guo, and X. C. Zeng, Phys. Chem. Chem. Phys. 14, 13035 (2012).
http://dx.doi.org/10.1039/c2cp42181j
28.
28. I. Popov, G. Seifert, and D. Tománek, Phys. Rev. Lett. 108, 156802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.156802
29.
29. A. C. Ford, J. C. Ho, Y. Chueh, Y. Tseng, Z. Fan, J. Guo, J. Bokor, and A. Javey, Nano Lett. 9, 360 (2009).
http://dx.doi.org/10.1021/nl803154m
30.
30. W. Lu, P. Xie, and C. M. Lieber, IEEE Trans. Electron Devices 55, 2859 (2008).
http://dx.doi.org/10.1109/TED.2008.2005158
31.
31. H. P. Wong, D. J. Frank, P. M. Solomon, C. H. J. Wann, and J. J. Welser, Proc. IEEE 87, 537 (1999).
http://dx.doi.org/10.1109/5.752515
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4894440
Loading
/content/aip/journal/adva/4/9/10.1063/1.4894440
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4894440
2014-09-09
2016-12-07

Abstract

We report on electric field effects on electron transport in multi-walled MoS nanotubes (NTs), fabricated using a two-step synthesis method from Mo SI nanowire bundle precursors. Transport properties were measured on 20 single nanotube field effect transistor (FET) devices, and compared with MoS layered crystal devices prepared using identical fabrication techniques. The NTs exhibited mobilities of up to 0.014 cm2V−1s−1 and an / ratio of up to 60. As such they are comparable with previously reported WS nanotube FETs, but materials defects and imperfections apparently limit their performance compared with multilayer MoS FETs with similar number of layers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4894440.html;jsessionid=qxG40mGIiDhX1zGKe36beX7F.x-aip-live-06?itemId=/content/aip/journal/adva/4/9/10.1063/1.4894440&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4894440&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4894440'
Right1,Right2,Right3,