Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. C. Hersam, Nat. Nanotechnol. 3, 387 (2008).
2. C. N. R. Rao, R. Voggu, and A. Govindaraj, Nanoscale 1, 96 (2009).
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
4. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
5. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
6. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
7. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
8. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
9. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).
10. S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, Nano Lett. 13, 100 (2013).
11. H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, Appl. Phys. Lett. 100, 123104 (2012).
12. W. Sik Hwang, M. Remskar, R. Yan, T. Kosel, J. Kyung Park, B. Jin Cho, W. Haensch, H. Xing, A. Seabaugh, and D. Jena, Appl. Phys. Lett. 102, 043116 (2013).
13. W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, Appl. Phys. Lett. 102, 042104 (2013).
14. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J. T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, Adv. Mater. 24, 2320 (2012).
15. Y. Yang, H. E. Unalan, P. Hiralal, K. Chremmou, A. Teh, I. Alexandrou, R. Tenne, and G. A. J. Amaratunga, in IEEE Conf. Nanotechnol. (2008), pp. 8587.
16. H. E. Unalan, Y. Yang, Y. Zhang, P. Hiralal, D. Kuo, S. Dalal, T. Butler, S. N. Cha, J. E. Jang, K. Chremmou, G. Lentaris, D. Wei, R. Rosentsveig, K. Suzuki, H. Matsumoto, M. Minagawa, Y. Hayashi, M. Chhowalla, A. Tanioka, W. I. Milne, R. Tenne, and G. A. J. Amaratunga, IEEE Trans. Electron Devices 55, 2988 (2008).
17. R. Levi, O. Bitton, G. Leitus, R. Tenne, and E. Joselevich, Nano Lett. 13, 3736 (2013).
18. M. Remskar, A. Mrzel, M. Virsek, M. Godec, M. Krause, A. Kolitsch, A. Singh, and A. Seabaugh, Nanoscale Res. Lett. 6, 26 (2011).
19. G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, Phys. Rev. Lett. 85, 146 (2000).
20. I. Milošević, B. Nikolić, E. Dobardžić, M. Damnjanović, I. Popov, and G. Seifert, Phys. Rev. B 76, 233414 (2007).
21. R. Tenne, L. Margulis, M. Genut, and G. Hodes, Nature 360, 444 (1992).
22. Y. Feldman, E. Wasserman, D. J. Srolovitz, and R. Tenne, Science 267, 222 (1995).
23. A. Zak, L. Sallacan-Ecker, A. Margolin, Y. Feldman, R. Popovitz-Biro, A. Albu-Yaron, M. Genut, and R. Tenne, Fullerenes, Nanotub. Carbon Nanostructures 19, 18 (2010).
24. M. Virsek, M. Krause, A. Kolitsch, A. Mrzel, I. Iskra, S. D. Skapin, and M. Remskar, J. Phys. Chem. C 114, 6458 (2010).
25. M. Rangus, M. Remškar, and A. Mrzel, Microelectronics J. 39, 475 (2008).
26. M. Remškar, M. Viršek, and A. Mrzel, Appl. Phys. Lett. 95, 133122 (2009).
27. P. Lu, X. Wu, W. Guo, and X. C. Zeng, Phys. Chem. Chem. Phys. 14, 13035 (2012).
28. I. Popov, G. Seifert, and D. Tománek, Phys. Rev. Lett. 108, 156802 (2012).
29. A. C. Ford, J. C. Ho, Y. Chueh, Y. Tseng, Z. Fan, J. Guo, J. Bokor, and A. Javey, Nano Lett. 9, 360 (2009).
30. W. Lu, P. Xie, and C. M. Lieber, IEEE Trans. Electron Devices 55, 2859 (2008).
31. H. P. Wong, D. J. Frank, P. M. Solomon, C. H. J. Wann, and J. J. Welser, Proc. IEEE 87, 537 (1999).

Data & Media loading...


Article metrics loading...



We report on electric field effects on electron transport in multi-walled MoS nanotubes (NTs), fabricated using a two-step synthesis method from Mo SI nanowire bundle precursors. Transport properties were measured on 20 single nanotube field effect transistor (FET) devices, and compared with MoS layered crystal devices prepared using identical fabrication techniques. The NTs exhibited mobilities of up to 0.014 cm2V−1s−1 and an / ratio of up to 60. As such they are comparable with previously reported WS nanotube FETs, but materials defects and imperfections apparently limit their performance compared with multilayer MoS FETs with similar number of layers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd