Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4894519
1.
1. A. Bostwick, T. Ohta, Th. Seyller, K. Horn, and E. Rotenberg, Nat. Phys. 3, 36 (2007).
http://dx.doi.org/10.1038/nphys477
2.
2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
3.
3. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
4.
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
5.
5. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London) 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
6.
6. H. L. Cao, Q. K. Yu, L. A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D. K. Benjamin, Z. Jiang, J. Bao, S. S. Pei, and Y. P. Chen, Appl. Phys. Lett. 96, 122106 (2010).
http://dx.doi.org/10.1063/1.3371684
7.
7. A. L. Friedman, J. T. Robinson, F. K. Perkins, and P. M. Campbell, Appl. Phys. Lett. 99, 022108 (2011).
http://dx.doi.org/10.1063/1.3610565
8.
8. J. W. Bai, R. Cheng, F. X. Xiu, L. Liao, M. S. Wang, A. Shailos, K. L. Wang, Y. Huang, and X. F. Duan, Nature Nanotech. 5, 655 (2010).
http://dx.doi.org/10.1038/nnano.2010.154
9.
9. Y. B. Zhou, B. H. Han, Z. M. Liao, H. C. Wu, and D. P. Yu, Appl. Phys. Lett. 98, 222502 (2011).
http://dx.doi.org/10.1063/1.3595681
10.
10. J. L. Olsen, Electron Transport in Metals (Interscience, New York, 1962).
11.
11. A. L. Friedman, J. L. Tedesco, P. M. Campbell, J. C. Culbertson, E. Aifer, F. K. Perkins, R. L. Myers-Ward, J. K. Hite, C. R. Eddy Jr., G. G. Jernigan, and D. K. Gaskill, Nano Lett. 10, 3962 (2010).
http://dx.doi.org/10.1021/nl101797d
12.
12. J. S. Hu and T. F. Rosenbaum, Nat. Mater. 7, 697 (2008).
http://dx.doi.org/10.1038/nmat2259
13.
13. Z. M. Liao, Y. B. Zhou, H. C. Wu, B. H. Han, and D. P. Yu, Europhys. Lett. 94, 57004 (2011).
http://dx.doi.org/10.1209/0295-5075/94/57004
14.
14. V. K. Arora and R. L. Peterson, Phys. Rev. B 12, 2285 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.2285
15.
15. V. K. Arora and H. N. Spector, Phys. Rev. B 24, 3616 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.3616
16.
16. Z. M. Wang, Q. Y. Xu, G. Ni, and Y. W. Du, Phys. Lett. A 314, 328 (2003).
http://dx.doi.org/10.1016/S0375-9601(03)00899-5
17.
17. J. W. McClure, Phys. Rev. 108, 612 (1957).
http://dx.doi.org/10.1103/PhysRev.108.612
18.
18. Z. M. Liao, H. C. Wu, S. S. Kumar, G. S. Duesberg, Y. B. Zhou, G. L. W. Cross, I. V. Shvets, and D. P. Yu, Adv. Mater. 24, 1862 (2012).
http://dx.doi.org/10.1002/adma.201104796
19.
19. E. H. Hall, Am. J. Math. 2, 287 (1879).
http://dx.doi.org/10.2307/2369245
20.
20. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nature Nanotech. 3, 491 (2008).
http://dx.doi.org/10.1038/nnano.2008.199
21.
21. F. P. Rouxinol, R. V. Gelamo, R. G. Amici, A. R. Vaz, and S. A. Moshkalev, Appl. Phys. Lett. 97, 25, 253104 (2010).
http://dx.doi.org/10.1063/1.3528354
22.
22. R. Ramprasad, P. V. Allmen, and L. R. C. Fonseca, Phys. Rev. B 60, 6023 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.6023
23.
23. B. Huang, Z. Y. Li, Z. R. Liu, G. Zhou, S. G. Hao, J. Wu, B. L. Gu, and W. H. Duan, J. Phys. Chem. C 112, 13442 (2008).
http://dx.doi.org/10.1021/jp8021024
24.
24. M. M. Parish and P. B. Littlewood, Phys. Rev. B 72, 094417 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.094417
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4894519
Loading
/content/aip/journal/adva/4/9/10.1063/1.4894519
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4894519
2014-09-02
2016-12-06

Abstract

We investigate the effect of external stimulus (temperature, magnetic field, and gases adsorptions) on anisotropic magnetoresistance (AMR) in multilayer graphene. The graphene sample shows superlinear magnetoresistance when magnetic field is perpendicular to the plane of graphene. A non-saturated AMR with a value of −33% is found at 10 K under a magnetic field of 7 T. It is surprisingly to observe that a two-fold symmetric AMR at high temperature is changed into a one-fold one at low temperature for a sample with an irregular shape. The anomalous AMR behaviors may be understood by considering the anisotropic scattering of carriers from two asymmetric edges and the boundaries of V(V) electrodes which serve as active adsorption sites for gas molecules at low temperature. Our results indicate that AMR in graphene can be optimized by tuning the adsorptions, sample shape and electrode distribution in the future application.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4894519.html;jsessionid=PKluCCTh-IBHCDV5NumbT5nA.x-aip-live-03?itemId=/content/aip/journal/adva/4/9/10.1063/1.4894519&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4894519&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4894519'
Right1,Right2,Right3,