Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4894524
1.
1. L. V. Wang, “Tutorial on Photoacoustic Microscopy and Computed Tomography,” IEEE J. Sel. Top. Quantum Electron. 14, 171179 (2008).
http://dx.doi.org/10.1109/JSTQE.2007.913398
2.
2. S. M. A. Salehin and T. D. Abhayapala, “Frequency-radial duality based photoacoustic image reconstruction,” J. Acoust. Soc. Am. 132, 150161 (2012).
http://dx.doi.org/10.1121/1.4725767
3.
3. A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, “Time-resolved laser optoacoustic tomography of inhomogeneous media,” Appl. Phys. B-Lasers Opt. 63, 545563 (1996).
http://dx.doi.org/10.1007/BF01830994
4.
4. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648650 (1998).
http://dx.doi.org/10.1364/OL.23.000648
5.
5. R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, “Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981988 (1999).
http://dx.doi.org/10.1109/2944.796320
6.
6. R. A. Kruger, D. R. Reinecke, and G. A. Kruger, “Thermoacoustic computed tomography–technical considerations,” Med. Phys. 26, 18321837 (1999).
http://dx.doi.org/10.1118/1.598688
7.
7. L. V. Wang, X. Zhao, H. Sun, and G. Ku, “Microwave-induced acoustic imaging of biological tissues,” Rev. Sci. Instrum. 70, 37443748 (1999).
http://dx.doi.org/10.1063/1.1149986
8.
8. G. Ku and L. V. Wang, “Scanning microwave-induced thermoacoustic tomography: Signal, resolution, and contrast,” Med. Phys. 28, 410 (2001).
http://dx.doi.org/10.1118/1.1333409
9.
9. M. H. Xu, G. Ku, and L. V. Wang, “Microwave-induced thermoacoustic tomography using multi-sector scanning,” Med. Phys. 28, 19581963 (2001).
http://dx.doi.org/10.1118/1.1395037
10.
10. Y. Xu and L. V. Wang, “Signal processing in scanning thermoacoustic tomography in biological tissues,” Med. Phys. 28, 15191524 (2001).
http://dx.doi.org/10.1118/1.1380436
11.
11. M. H. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imag. 21, 814822 (2002).
http://dx.doi.org/10.1109/TMI.2002.801176
12.
12. Y. Xu, M. H. Xu, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography - II: Cylindrical geometry,” IEEE Trans. Med. Imag. 21, 829833 (2002).
http://dx.doi.org/10.1109/TMI.2002.801171
13.
13. J. Zhang, M. A. Anastasio, and L. V. Wang, “Effects of different imagingmodels on least-squares image reconstruction accuracy in photoacoustic tomography,” IEEE Trans. Med. Imag. 28, 17811790 (2009).
http://dx.doi.org/10.1109/TMI.2009.2024082
14.
14. A. A. Karabutov, E. V. Savateeva, and A. A. Oraevsky, “Optoacoustic Tomography: New Modality of laser diagnostic systems,” Laser Phys. 13, 711723 (2003).
15.
15. X. D. Wang, Y. J. Pang, G. Ku, G. Stoica, and L. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett. 28, 17391741 (2003).
http://dx.doi.org/10.1364/OL.28.001739
16.
16. G. Ku, X. D. Wang, G. Stoica, and L. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 13291338 (2004).
http://dx.doi.org/10.1088/0031-9155/49/7/018
17.
17. Y. Xu and L. V. Wang, “Time Reversal and Its Application to Tomography with Diffracting Sources,” Phys. Rev. Lett. 92, 033902 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.033902
18.
18. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602631 (2011).
http://dx.doi.org/10.1098/rsfs.2011.0028
19.
19. A. Curtis, P. Gerstoft, H. Sato, R. Snieder, and K. Wapenear, “Seismic interferometryturning noise into signal,” The Leading Edge 25, 10821092 (2006).
http://dx.doi.org/10.1190/1.2349814
20.
20. R. Snieder, “Extracting the Green's function of attenuating heterogeneous media from uncorrelated waves,” J. Acoust. Soc. Am. 121, 26372643 (2007).
http://dx.doi.org/10.1121/1.2713673
21.
21. R. Snieder, “Retrieving the Green's function of the diffusion equation from the response to a random forcing,” Phys. Rev. E. 74, 046620 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.046620
22.
22. N. M. Shapiro, M. Campillo, L. Stehly, and M. H. Ritzwoller, “High resolution surface wave tomography from ambient seismic noise,” Science 307, 16151618 (2005).
http://dx.doi.org/10.1126/science.1108339
23.
23. P. Roux, K. G. Sabra, P. Gerstoft, W. A. Kuperman, and M. C. Fehler, “P-waves from cross-correlation of seismic noise,” Geophys. Res. Lett. 32, L19303, doi:10.1029/2005GL023803 (2005).
http://dx.doi.org/10.1029/2005GL023803
24.
24. K. G. Sabra, P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler, “Surface wave tomography from microseism in Southern California,” Geophys. Res. Lett. 32, L14311, doi:10.1029/2005GL023155 (2005).
http://dx.doi.org/10.1029/2005GL023155
25.
25. K. G. Sabra, P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler, “Extracting time-domain Green's function estimates from ambient seismic noise,” Geophys. Res. Lett. 32, L03310, doi:10.1029/2004GL021862 (2005).
http://dx.doi.org/10.1029/2004GL021862
26.
26. R. L. Weaver and O. I. Lobkis, “Ultrasonics without a Source: Thermal Fluctuation Correlations at MHz Frequencies,” Phys. Rev. Lett. 87, 134301 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.134301
27.
27. A. E. Malcolm, J. A. Scales, and B. A. van Tiggelen, “Extracting the Green function from diffuse, equipartitioned waves,” Phys. Rev. E 70, 015601R (2004).
http://dx.doi.org/10.1103/PhysRevE.70.015601
28.
28. E. Larose, G. Montaldo, A. Derode, and M. Campillo, “Passive imaging of localized reflectors and interfaces in open media,” Appl. Phys. Lett. 88, 104103 (2006).
http://dx.doi.org/10.1063/1.2186112
29.
29. A. Bakulin and R. Calvert, “The virtual source method: Theory and case study,” Geophysics 71, SI139SI150 (2006).
http://dx.doi.org/10.1190/1.2216190
30.
30. A. Bakulin and R. Calvert, “Virtual Source: new method for imaging and 4D below complex overburden,” Expanded Abstracts of 2004 SEG Meeting Society of Exploration Geophysicists, Tulsa OK, 24772480 (2004).
31.
31. R. Snieder and E. Şafak, “Extracting the building response using seismic interferometry: Theory and application to the Millikan library in Pasadena, California,” Bull. Seismol. Soc. Am. 96, 586598 (2006).
http://dx.doi.org/10.1785/0120050109
32.
32. R. Snieder, J. Sheiman, and R. Calvert, “Equivalence of the virtual source method and wavefield deconvolution in seismic interferometry,” Phys. Rev. E 73, 066620 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.066620
33.
33. D. J. van Manen, J. O. A. Robertsson, and A. Curtis, “Modeling of Wave Propagation in Inhomogeneous Media,” Phys. Rev. Lett. 94, 164301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.164301
34.
34. M. Campillo and A. Paul, “Long-Range Correlations in the Diffuse Seismic Coda,” Science 299, 547549 (2003).
http://dx.doi.org/10.1126/science.1078551
35.
35. J. Brunkera and P. Beard, “Pulsed photoacoustic Doppler flowmetry using time-domain cross-correlation: Accuracy, resolution and scalability,” J. Acoust. Soc. Am. 132, 17801791 (2012).
http://dx.doi.org/10.1121/1.4739458
36.
36. Z. Guo, L. Li, and L. V. Wang, “The speckle-free nature of photoacoustic tomography,” Proc. of SPIE 7177, 71772J17 (2013).
http://dx.doi.org/10.1117/12.809374
37.
37. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging. Hoboken (Wiley, NJ, 2007), pp. 284287.
38.
38. J. T. Fokkema and P. M. van der Berg, Seismic Applications of Reciprocity (Elseiver, Amsterdam, 1993), pp. 95103.
39.
39. J. T. Fokkema and P. M. van der Berg, Wavefields and Reciprocity (Delft University Press, Delft, 1996), pp. 99108.
40.
40. I. G. Calasso, W. Craig, and G. J. Diebold, “Photoacoustic Point Source,” Phys. Rev. Lett. 86, 35503553 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3550
41.
41. K. Wapenaar, J. Fokkema, and R. Snieder, “Time-lapse travel time change of multiply scattered acoustic wavesi,” J. Acoust. Soc. Am. 118, 27832786 (2005).
http://dx.doi.org/10.1121/1.2046847
42.
42. K. Wapenaar, “Retrieving the Elastodynamic Green's Function of an Arbitrary Inhomogeneous Medium by Cross Correlation,” Phys. Rev. Lett. 93, 254301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.254301
43.
43. M. A. Anastasio, J. Zhang, D. Modgil, and P. J. L. Rivière, “Application of inverse source concepts to photoacoustic tomography,” Inverse Problems 23, S21S35 (2007).
http://dx.doi.org/10.1088/0266-5611/23/6/S03
44.
44. S. G. Mykhlin, Mathematical Physics: An Advanced Course (North-Holland, Amsterdam, 1970), pp. 345370.
45.
45. Y. V. Egorov and M. A. Shubin, Partial Differential Equations vol 1 (Springer, Berlin, 1992), pp. 1215.
46.
46. E. Demiralp and H. Beker, “Properties of bound states of the Schrödinger equation with attractive Dirac delta potentials,” J. Phys. A: Mathematical and General 36, 74497459 (2003).
http://dx.doi.org/10.1088/0305-4470/36/26/315
47.
47. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, New York, 1980), pp. 926927.
48.
48. A. Rosencwaig, “Photoacoustic spectroscopy of solids,” Optic Communications 7, 305308 (1973).
http://dx.doi.org/10.1016/0030-4018(73)90039-4
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4894524
Loading
/content/aip/journal/adva/4/9/10.1063/1.4894524
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4894524
2014-09-02
2016-12-04

Abstract

The superposition of the Green's function and its time reversal can be extracted from the photoacoustic point sources applying the representation theorems of the convolution and correlation type. It is shown that photoacoustic pressure waves at locations of random point sources can be calculated with the solution of the photoacoustic wave equation and utilization of the continuity and the discontinuity conditions of the pressure waves in the frequency domain although the pressure waves cannot be measured at these locations directly. Therefore, with the calculated pressure waves at the positions of the sources, the spectral power density can be obtained for any system consisting of two random point sources. The methodology presented here can also be generalized to any finite number of point like sources. The physical application of this study includes the utilization of the cross-correlation of photoacoustic waves to extract functional information associated with the flow dynamics inside the tissue.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4894524.html;jsessionid=P25gpRku5iMv38sZbkOYJ8uA.x-aip-live-03?itemId=/content/aip/journal/adva/4/9/10.1063/1.4894524&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4894524&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4894524'
Right1,Right2,Right3,