Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4894867
1.
1. J. B. Casady and R. W. Johnson, Solid-State Electron. 39, 1409 (1996).
http://dx.doi.org/10.1016/0038-1101(96)00045-7
2.
2. C. Codreanu, M. Avram, E. Carbunescu, and E. Iliescu, Mater. Sci. Semicond. Process. 3, 137 (2000).
http://dx.doi.org/10.1016/S1369-8001(00)00022-6
3.
3. A. K. Agarwal, S. Seshadri, and L. B. Rowland, IEEE Electron Device Lett. 18, 592 (1997).
http://dx.doi.org/10.1109/55.644081
4.
4. G. Pensl, F. Ciobanu, T. Frank, M. Krieger, S. Reshanov, F. Schmid, and M. Weidner, Int. J. High. Speed Electron. Syst. 15, 705 (2005).
http://dx.doi.org/10.1142/S0129156405003405
5.
5. Y. M. Tairov and V. F. Tsvetkov, J. Cryst. Growth 43, 209 (1978).
http://dx.doi.org/10.1016/0022-0248(78)90169-0
6.
6. U. Lindefelt, H. Iwata, S. Öberg, and P. R. Briddon, Phys. Rev. B 67, 155204 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155204
7.
7. H. P. Iwata, U. Lindefelt, S. Öberg, and P. R. Briddon, Physica B 340–342, 165 (2003).
http://dx.doi.org/10.1016/j.physb.2003.09.045
8.
8. M. Kanaya, J. Takahashi, Y. Fujiwara, and A. Moritani, Appl. Phys. Lett. 58, 56 (1991).
http://dx.doi.org/10.1063/1.104443
9.
9. A. Fissel, J. Cryst. Growth 212, 438 (2000).
http://dx.doi.org/10.1016/S0022-0248(00)00330-4
10.
10. T. Shiramomo, B. Gao, F. Mercier, S. Nishizawa, S. Nakano, Y. Kangawa, and K. Kakimoto, J. Cryst. Growth 352, 177 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.01.023
11.
11. E. Schmitt, T. Straubinger, M. Rasp, M. Vogel, and A. Wohlfart, J. Cryst. Growth 310, 966 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2007.11.185
12.
12. A. Itoh, H. Akita, T. Kimoto, and H. Matsunami, Appl. Phys. Lett. 65, 1400 (1994).
http://dx.doi.org/10.1063/1.112064
13.
13. T. Shiramomo, B. Gao, F. Mercier, S. Nishizawa, S. Nakano, and K. Kakimoto, J. Cryst. Growth 385, 95 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2013.03.036
14.
14. D. Chaussende, M. Ucar, L. Auvray, F. Baillet, M. Pons, and R. Madar, Cryst. Growth Des. 5, 1539 (2005).
http://dx.doi.org/10.1021/cg050009i
15.
15. R. A. Stein, P. Lanig, and S. Leibenzeder, Mater. Sci. Eng. B, 11, 69 (1992).
http://dx.doi.org/10.1016/0921-5107(92)90193-D
16.
16. G. Dhanaraj, F. Liu, M. Dudley, H. Zhang, and V. Prasad, MRS Proceedings. 815, J531 (2004).
http://dx.doi.org/10.1557/PROC-815-J5.31
17.
17. P. G. Neudeck, A. J. Trunek, D. J. Spry, J. A. Powell, H. Du, M. Skowronski, X. R. Huang, and M. Dudley, Chem. Vap. Depos. 12, 531 (2006).
http://dx.doi.org/10.1002/cvde.200506460
18.
18. C. C. Battaile, Comput. Methods Appl. Mech. Engrg. 197, 3386 (2008).
http://dx.doi.org/10.1016/j.cma.2008.03.010
19.
19. M. Camarda, A. La Magna, and F. La Via, J. Comput. Phys. 227, 10751093 (2007).
http://dx.doi.org/10.1016/j.jcp.2007.08.036
20.
20. N. W. Thibault, Am. Mineral. 29, 327 (1944).
21.
21. M. Stockmeier, R. Müller, S. A. Sakwe, P. J. Wellmann, and A. Magerl, J. Appl. Phys. 105, 033511 (2009).
http://dx.doi.org/10.1063/1.3074301
22.
22. X. R. Huang, M. Dudley, W. Cho, R. S. Okojie and P. G. Neudeck, Mater. Sci. Forum 457–460, 157 (2004).
http://dx.doi.org/10.4028/www.scientific.net/MSF.457-460.157
23.
23. J. A. Powell, P. G. Neudeck, A. J. Trunek, G. M. Beheim, L. G. Matus, R. W. Hoffman, and L. J. Keys, Appl. Phys. Lett. 77, 1449 (2000).
http://dx.doi.org/10.1063/1.1290717
24.
24. R.-F. Xiao, J. Alexander, and F. Rosenberger, Phys. Rev. A 43, 2977 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.2977
25.
25. J. Blue, I. Beichl, and F. Sullivan, Phys. Rev. E 51, R867 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.R867
26.
26. M. Camarda, A. La Magna, P. Fiorenza, F. Giannazzo, and F. La Via, J. Cryst. Growth 310, 971 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2007.11.132
27.
27. S. Tanaka, R. S. Kern, and R. F. Davis, Appl. Phys. Lett. 65, 2851 (1994).
http://dx.doi.org/10.1063/1.112513
28.
28. T. Kimoto, A. Itoh, and H. Matsunami, Phys. Status Solidi B-Basic Solid State Phys. 202, 247 (1997).
http://dx.doi.org/10.1002/1521-3951(199707)202:1<247::AID-PSSB247>3.0.CO;2-Q
29.
29. H. Matsunami and T. Kimoto, Mater. Sci. Eng. R-Rep. 20, 125 (1997).
http://dx.doi.org/10.1016/S0927-796X(97)00005-3
30.
30. C. Liu, X. Chen, T. Peng, B. Wang, W. Wang, and W. Gang, J. Cryst. Growth 394, 126 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.02.027
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4894867 for Supplementary Material 1 and 2. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4894867
Loading
/content/aip/journal/adva/4/9/10.1063/1.4894867
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4894867
2014-09-04
2016-09-26

Abstract

Polytype stability is very important for high quality SiC single crystal growth. However, the growth conditions for the 4H, 6H and 15R polytypes are similar, and the mechanism of polytype stability is not clear. The kinetics aspects, such as surface-step nucleation, are important. The kinetic Monte Carlo method is a common tool to study surface kinetics in crystal growth. However, the present lattice models for kinetic Monte Carlo simulations cannot solve the problem of the competitive growth of two or more lattice structures. In this study, a competitive lattice model was developed for kinetic Monte Carlo simulation of the competition growth of the 4H and 6H polytypes of SiC. The site positions are fixed at the perfect crystal lattice positions without any adjustment of the site positions. Surface steps on seeds and large ratios of diffusion/deposition have positive effects on the 4H polytype stability. The 3D polytype distribution in a physical vapor transport method grown SiC ingot showed that the facet preserved the 4H polytype even if the 6H polytype dominated the growth surface. The theoretical and experimental results of polytype growth in SiC suggest that retaining the step growth mode is an important factor to maintain a stable single 4H polytype during SiC growth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4894867.html;jsessionid=X5qK26V_MAyYy81v2dsz4J4I.x-aip-live-02?itemId=/content/aip/journal/adva/4/9/10.1063/1.4894867&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4894867&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4894867'
Right1,Right2,Right3,