Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4895109
1.
1. H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00444-8
2.
2. M. Tanaka, J. Vac. Sci. Technol. B 16, 2267 (1998).
http://dx.doi.org/10.1116/1.590160
3.
3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
4.
4. R. C. Myers, B. L. Sheu, A. W. Jackson, A. C. Gossard, P. Schiffer, N. Samarth, and D. D. Awschalom, Phys. Rev. B 74, 155203 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.155203
5.
5. N. Samarth, Nature Mater. 11, 360 (2012).
http://dx.doi.org/10.1038/nmat3317
6.
6. H. Saito, V. Zayets, S. Yamagata, and K. Ando, Phys. Rev. Lett. 90, 207202 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.207202
7.
7. S. Kuroda, N. Nishizawa, K. Takita, M. Mitome, Y. Bando, K. Osuch, and T. Dietl, Nature Mater. 6, 440 (2007).
http://dx.doi.org/10.1038/nmat1910
8.
8. Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002).
http://dx.doi.org/10.1126/science.1066348
9.
9. M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko, Nature Mater. 5, 653 (2006).
http://dx.doi.org/10.1038/nmat1686
10.
10. J.-S. Kang, G. Kim, S. C. Wi, S. S. Lee, S. Choi, S. Cho, S. W. Han, K. H. Kim, H. J. Song, H. J. Shin, A. Sekiyama, S. Kasai, S. Suga, and B. I. Min, Phys. Rev. Lett. 94, 147202 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.147202
11.
11. S. Sugahara, K. L. Lee, S. Yada, and M. Tanaka, Jpn. J. Appl. Phys. 44, L1426 (2005).
http://dx.doi.org/10.1143/JJAP.44.L1426
12.
12. D. Bougeard, S. Ahlers, A. Trampert, N. Sircar, and G. Abstreiter, Phys. Rev. Lett. 97, 237202 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.237202
13.
13. A. P. Li, C. Zeng, K. van Benthem, M. F. Chisholm, J. Shen, S. V. S. Nageswara Rao, S. K. Dixit, L. C. Feldman, A. G. Petukhov, M. Foygel, and H. H. Weitering, Phys. Rev. B 75, 201201(R) (2007).
http://dx.doi.org/10.1103/PhysRevB.75.201201
14.
14. J. Chen, K. L. Wang, and K. Galatsis, Appl. Phys. Lett. 90, 012501 (2007).
http://dx.doi.org/10.1063/1.2424658
15.
15. T. Devillers, M. Jamet, A. Barski, V. Poydenot, P. Bayle-Guillemaud, E. Bellet- Amalric, S. Cherifi, and J. Cibert, Phys. Rev. B 76, 205306 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205306
16.
16. C. Zeng, Z. Zhang, K. Benthem, M. F. Chisholm, and H. H. Weitering, Phys. Rev. Lett. 100, 066101 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.066101
17.
17. D. Bougeard, N. Sircar, S. Ahlers, V. Lang, G. Abstreiter, A. Trampert, J. M. LeBeau, S. Stemmer, D. W. Saxey, and A. Cerezo, Nano Lett. 9, 3743 (2009).
http://dx.doi.org/10.1021/nl901928f
18.
18. Y. Wang, F. Xiu, J. Zou, K. L. Wang, and A. P. Jacob, Appl. Phys. Lett. 96, 051905 (2010).
http://dx.doi.org/10.1063/1.3297880
19.
19. F. Xiu, Y. Wang, J. Kim, A. Hong, J. Tang, A. P. Jacob, J. Zou, and K. L. Wang, Nature Mater. 9, 337 (2010).
http://dx.doi.org/10.1038/nmat2716
20.
20. S. Yada, R. Okazaki, S. Ohya, and M. Tanaka, Appl. Phys. Express 3, 123002 (2010).
http://dx.doi.org/10.1143/APEX.3.123002
21.
21. Y. Shuto, M. Tanaka, and S. Sugahara, J. Appl. Phys. 99, 08D516 (2006).
http://dx.doi.org/10.1063/1.2172909
22.
22. Y. Shuto, M. Tanaka, and S. Sugahara, Appl. Phys. Lett. 90, 132512 (2007).
http://dx.doi.org/10.1063/1.2718270
23.
23. S. Mirabella, G. Impellizzeri, A. M. Piro, E. Bruno, and M. G. Grimaldi, Appl. Phys. Lett. 92, 251909 (2008).
http://dx.doi.org/10.1063/1.2949088
24.
24. Y. Shuto, M. Tanaka, and S. Sugahara, Jpn. J. Appl. Phys. 47, 7108 (2008).
http://dx.doi.org/10.1143/JJAP.47.7108
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4895109 for the Arrott plots of the MCD signals from the Ge1-xFex films. [Supplementary Material]
26.
26. Y. Shuto, M. Tanaka, and S. Sugahara, Phys. Stat. Sol. (c) 3, 4110 (2006).
http://dx.doi.org/10.1002/pssc.200672881
27.
27. C. Zener, Phys. Rev. 82, 403 (1951).
http://dx.doi.org/10.1103/PhysRev.82.403
28.
28. H. Akai, Phys. Rev. Lett. 81, 3002 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.3002
29.
29. K. Hirakawa, S. Katsumoto, T. Hayashi, Y. Hashimoto, and Y. Iye, Phys. Rev. B 65, 193312 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.193312
30.
30. H. Kobayashi, Y. Nishio, K. Kanazawa, S. Kuroda, M. Mitome, and Y. Bando, Physica B: Condensed Matter. 407(15), 2947 (2012).
http://dx.doi.org/10.1016/j.physb.2011.08.023
31.
31. K. Zhang, R. Akiyama, K. Kanazawa, S. Kuroda, and H. Ofuchi, phys. stat. sol. (c) 11(7–8), 1324 (2014).
http://dx.doi.org/10.1002/pssc.201300755
32.
32. B. L. Sheu, R. C. Myers, J. M. Tang, N. Samarth, D. D. Awschalom, P. Schiffer, and M. E. Flatte, Phys. Rev. Lett. 99, 227205 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.227205
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4895109
Loading
/content/aip/journal/adva/4/9/10.1063/1.4895109
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4895109
2014-09-08
2016-09-25

Abstract

We have investigated the transport and magnetic properties of group-IV ferromagnetic semiconductor Ge Fe films ( = 1.0 and 2.3%) with and without boron doping grown by molecular beam epitaxy (MBE). In order to accurately measure the transport properties of 100-nm-thick Ge Fe films, (001)-oriented silicon-on-insulator (SOI) wafers with an ultra-thin Si body layer (∼5 nm) were used as substrates. Owing to the low Fe content, the hole concentration and mobility in the Ge Fe films were exactly estimated by Hall measurements because the anomalous Hall effect in these films was found to be negligibly small. By boron doping, we increased the hole concentration in Ge Fe from ∼1018 cm−3 to ∼1020 cm−3 ( = 1.0%) and to ∼1019 cm−3 ( = 2.3%), but no correlation was observed between the hole concentration and magnetic properties. This result presents a contrast to the hole-induced ferromagnetism in III-V ferromagnetic semiconductors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4895109.html;jsessionid=8n0rQUZFsxT3NLjpWQLm6Mge.x-aip-live-03?itemId=/content/aip/journal/adva/4/9/10.1063/1.4895109&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4895109&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4895109'
Right1,Right2,Right3,