Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4895385
1.
1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature(London) 432, 488 (2004).
http://dx.doi.org/10.1038/nature03090
2.
2. A. Suresh, P. Wellenius, A. Dhawan, and J. Mutha, Appl. Phys. Lett. 90, 123512 (2007).
http://dx.doi.org/10.1063/1.2716355
3.
3. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys. Lett. 89, 112123 (2006).
http://dx.doi.org/10.1063/1.2353811
4.
4. J. Park, C. Kim, S. Kim, I. Song, S. Kim, D. Kang, H. Lim, H. Yin, R. Jung, E. Lee, J. Lee, K.-W. Kwon, and Y. Park, IEEE Electron Device Lett. 29, 879 (2008).
http://dx.doi.org/10.1109/LED.2008.2000815
5.
5. J. H. Na, M. Kitamura, and Y. Arakawa, Appl. Phys. Lett. 93, 063501 (2006).
http://dx.doi.org/10.1063/1.2969780
6.
6. J. Jeong, G. J. Lee, J. Kim, and B. Choi, Appl. Phys. Lett. 100, 112109 (2012).
http://dx.doi.org/10.1063/1.3694273
7.
7. M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J. S. Park, J. K. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett. 90, 212114 (2007).
http://dx.doi.org/10.1063/1.2742790
8.
8. J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and S. I. Kim, Appl. Phys. Lett. 90, 262106 (2007).
http://dx.doi.org/10.1063/1.2753107
9.
9. A. Suresh and J. F. Muth, Appl. Phys. Lett. 92,033502 (2008).
http://dx.doi.org/10.1063/1.2824758
10.
10. J. K. Jeong, J. H. Jeong, H. W. Yang, J.-S. Park, Y.-G. Mob, and H. D. Kim, Appl. Phys. Lett. 91, 113505 (2007).
http://dx.doi.org/10.1063/1.2783961
11.
11. J. Jeong, G. J. Lee, J. Kim, S. M. Jeong, and J.-H. Kim , J. Appl. Phys. 114, 094502 (2013).
http://dx.doi.org/10.1063/1.4819886
12.
12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438, 197 (2005).
http://dx.doi.org/10.1038/nature04233
13.
13. A. K. Geim, K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
14.
14. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
15.
15. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
16.
16. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, Adv. Mater. 22, 2743 (2010).
http://dx.doi.org/10.1002/adma.200904383
17.
17. G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. Brink, Phys. Rev. B: Condens. Matter 76, 073103 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.073103
18.
18. C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, and D. Zhu, Adv. Mater. 20, 3289 (2008).
http://dx.doi.org/10.1002/adma.200800150
19.
19. D. Seo, S. Jeon, S. Seo, I. Song, C. Kim, S. Park, J. S. Harris, and U.-I. Chung, Appl. Phys. Lett. 97, 172106 (2010).
http://dx.doi.org/10.1063/1.3490245
20.
20. J. E. Lee, B. K. Sharma, S.-K. Lee, H. Jeon, B. H. Hong, H.-J. Lee, and J.-H. Ahn, Appl. Phys. Lett. 102, 113112 (2013).
http://dx.doi.org/10.1063/1.4796174
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4895385
Loading
/content/aip/journal/adva/4/9/10.1063/1.4895385
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4895385
2014-09-09
2016-12-09

Abstract

High performance a-IGZO thin-film transistors (TFTs) are fabricated using an asymmetric graphene drain electrode structure. A-IGZO TFTs (channel length = 3 μm) were successfully demonstrated with a saturation field-effect mobility of 6.6 cm2/Vs without additional processes between the graphene and a-IGZO layer. The graphene/a-IGZO junction exhibits Schottky characteristics and the contact property is affected not only by the Schottky barrier but also by the parasitic resistance from the depletion region under the graphene electrode. Therefore, to utilize the graphene layer as S/D electrodes for a-IGZO TFTs, an asymmetric electrode is essential, which can be easily applied to the conventional pixel electrode structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4895385.html;jsessionid=ztna7kjBJgl4XOsFeeznVyd2.x-aip-live-03?itemId=/content/aip/journal/adva/4/9/10.1063/1.4895385&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4895385&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4895385'
Right1,Right2,Right3,