Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4895536
1.
1. V. Holten, C. E. Bertrand, M. A. Anisimov, and J. V. Sengers, J. Chem. Phys. 136, 094507 (2012).
http://dx.doi.org/10.1063/1.3690497
2.
2. H. Tanaka, Eur. Phys. J. E35.10, 1 (2012).
3.
3. P. W. Bridgeman, Proc. Am. Acad. Arts Sci. 47, 441 (1912).
http://dx.doi.org/10.2307/20022754
4.
4. G. S. Kell and E. Whalley, J. Chem. Phys. 48, 2359 (1968).
http://dx.doi.org/10.1063/1.1669437
5.
5. A. V. Okhulikov, Y. N. Demianets, and Y. E. Gorbaty, J. Chem. Phys. 100, 1578 (1994).
http://dx.doi.org/10.1063/1.466584
6.
6. A. M. Saitta and F. Datchi, Phys. Rev. 67, 020201(R) (1 (2003).
7.
7. F. Li, Q. Cui, Z. He, J. Zhang, Q. Zhou, G. Zou, and S. Sasaki, J. Chem. Phys. 123, 174511 (1 (2005).
http://dx.doi.org/10.1063/1.2102888
8.
8. S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, J. Phys. Chenistry Lett. (2014).
9.
9. Y. Koga, Solution Thermodynamics and Its Application to Aqueous Solutions: A Differential Approach (ALL) (Elsevier B. V., Amsterdam, 2007), pp. 1296.
10.
10. Y. Koga, J. Phys. Chem. 100, 5172 (1996).
http://dx.doi.org/10.1021/jp952372d
11.
11. Y. Koga, Phys. Chem. Chem. Phys. 15, 14548 (2013).
http://dx.doi.org/10.1039/c3cp51650d
12.
12. Y. Koga, Solution Thermodynamics and Its Application to Aqueous Solutions: A Differential Approach (V) (Elsevier B. V., Amsterdam, 2007), pp. 89150.
13.
13. K. Yoshida, S. Baluja, A. Inaba, K. Tozaki, and Y. Koga, J. Solution Chem. 40, 1271 (2011).
http://dx.doi.org/10.1007/s10953-011-9715-1
14.
14. K. Yoshida, S. Baluja, A. Inaba, and Y. Koga, J. Chem. Phys. 134, 214502 (2011).
http://dx.doi.org/10.1063/1.3595263
15.
15. C.-W. Lin and J. P. M. Trusler, J. Chem. Phys. 136, 094511(1 (2012).
http://dx.doi.org/10.1063/1.3688054
16.
16. B. Guignon, C. Aparicio, and P. D. Sanz, J. Chem. Eng. Data 55, 3338 (2010).
http://dx.doi.org/10.1021/je100083w
17.
17. L. Ter Minassian, P. Pruzan, and A. Soulard, J. Chem. Phys. 75, 3064 (1981).
http://dx.doi.org/10.1063/1.442402
18.
18. Y. Koga, Solution Thermodynamics and Its Application to Aqueous Solutions: A Differential Approach (IV) (2007), pp. 6986.
19.
19. K. Yoshida, A. Inaba, and Y. Koga, J. Solution Chem. 43, 663 (2014).
http://dx.doi.org/10.1007/s10953-013-0122-7
20.
20. M. T. Parsons, P. Westh, J. V. Davies, C. Trandum, E. C. H. To, W. M. Chiang, E. G. M. Yee, and Y. Koga, J. Solution Chem. 30, 1007 (2001).
http://dx.doi.org/10.1023/A:1013303427259
21.
21. H. E. Stanley and J. Teixeira, J. Chem. Phys. 73, 3404 (1980).
http://dx.doi.org/10.1063/1.440538
22.
22. B. Kamb and A. Prakash, Acta Crystographica B24, 1317 (1968).
http://dx.doi.org/10.1107/S0567740868004231
23.
23. K. Suzuki, Water and Aqueous Solutions (Kyouritsu, Tokyo, 1982), p. 55.
24.
24. B. Kamb, A. Prakash, and C. Knobler, Acta Crystographica 22, 706.
http://dx.doi.org/10.1107/S0365110X67001409
25.
25. W. F. Kuhs and M. S. Lehmann, in Water Sci. Rev., edited by F. Franks (Cambridge University, Cambridge, 1986), p. 1.
26.
26. G. S. Fanourgakis and S. S. Xantheas, J. Chem. Phys. 124, 174504 (2006).
http://dx.doi.org/10.1063/1.2193151
27.
27. Y. Koga, Solution Thermodynamics and Its Application to Aqueous Solutions: A Differential Approach (VI) (Elsevier B. V., Amsterdam, 2007), pp. 151173.
28.
28. Y. Koga, Can. J. Chem. 66, 1187 (1988).
http://dx.doi.org/10.1139/v88-194
29.
29.Of course, κs itself is a 2nd derivative and can be used to seek anomalies in its p-derivative. However, in the present data analysis in the (p, T) variable system, it is not proper in that keeping S constant forces both δp and δT nonzero in taking the derivative (∂V/∂p)S.
30.
30.See Supplementary Material Document No. http://dx.doi.org/10.1063/1.4895536 for calculation of κT, and its p- and double p-derivatives. [Supplementary Material]
31.
31. T. Kawamoto, S. Ochiai, and H. Kagi, J. Chem. Phys. 120, 5867 (2004).
http://dx.doi.org/10.1063/1.1689639
32.
32. A. K. Soper and M. A. Ricci, Phys. Rev. Lett., 84, 2881 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.2881
33.
33. Th. Strassle, A. M. Saitta, Y. Le. Godec, G. Hamel, S. Klotz, J. S. Loveday, and R. J. Nelmes, Phys. Rev. Lett. 96, 067801(4pages) (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.067801
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4895536
Loading
/content/aip/journal/adva/4/9/10.1063/1.4895536
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4895536
2014-09-09
2016-09-26

Abstract

Using the literature raw data of the speed of sound and the specific volume, the isothermal compressibility, , a second derivative thermodynamic quantity of , was evaluated for liquid HO in the pressure range up to 350 MPa and the temperature to 50 ºC. We then obtained its pressure derivative, d /d, a third derivative numerically without using a fitting function to the data. On taking yet another -derivative at a fixed graphically without resorting to any fitting function, the resulting d2 /d 2, a fourth derivative, showed a weak but clear step anomaly, with the onset of the step named point X and its end point Y. In analogy with another third and fourth derivative pair in binary aqueous solutions of glycerol, d /d and d2 /d 2, at 0.1 MPa ( is the thermal expansivity and the mole fraction of solute glycerol) in our recent publication [ , 663-674 (2014); :10.1007/s10953-013-0122-7], we argue that there is a gradual crossover in the molecular organization of pure HO from a low to a high -regions starting at point X and ending at Y at a fixed . The crossover takes place gradually spanning for about 100 MPa at a fixed temperature. The extrapolated temperature to zero seems to be about 70 – 80 °C for points X and 90 – 110 °C for Y. Furthermore, the mid-points of X and Y seem to extrapolate to the triple point of liquid, ice Ih and ice III. Recalling that the zero extrapolation of point X and Y for binary aqueous glycerol at 0.1 MPa gives about the same values respectively, we suggest that at zero pressure the region below about 70 °C the hydrogen bond network is bond-percolated, while above about 90 ºC there is no hydrogen bond network. Implication of these findings is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4895536.html;jsessionid=e6jowb3xdgBp18Iu2X2960L7.x-aip-live-06?itemId=/content/aip/journal/adva/4/9/10.1063/1.4895536&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4895536&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4895536'
Right1,Right2,Right3,