Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/4/9/10.1063/1.4896125
1.
1. B. Conway, J. Electrochem. Soc. 138, 1539 (1991).
http://dx.doi.org/10.1149/1.2085829
2.
2. C. Liu, F. Li, L.-P. Ma, and H.-M. Cheng, Adv. Mater. 22, E28 (2010).
http://dx.doi.org/10.1002/adma.200903328
3.
3. A. Burke, J. Power Sources 91, 37 (2000).
http://dx.doi.org/10.1016/S0378-7753(00)00485-7
4.
4. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).
http://dx.doi.org/10.1038/nmat2297
5.
5. A. Bello, O. O. Fashedemi, J. N. Lekitima, M. Fabiane, D. Dodoo-Arhin, K. I. Ozoemena, Y. Gogotsi, A. T. Charlie Johnson, and N. Manyala, AIP Adv. 3, 082118 (2013).
http://dx.doi.org/10.1063/1.4819270
6.
6. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, and Z. Bao, Nano Lett. 11, 2905 (2011).
http://dx.doi.org/10.1021/nl2013828
7.
7. D. Liu, X. Wang, X. Wang, W. Tian, J. Liu, C. Zhi, D. He, Y. Bando, and D. Golberg, J. Mater. Chem. A 1, 1952 (2013).
http://dx.doi.org/10.1039/c2ta01035f
8.
8. A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, and N. Manyala, J. Mater. Sci. 40, 6707 (2013).
http://dx.doi.org/10.1007/s10853-013-7471-x
9.
9. D.-W. Wang, F. Li, and H.-M. Cheng, J. Power Sources 185, 1563 (2008).
http://dx.doi.org/10.1016/j.jpowsour.2008.08.032
10.
10. C. Zhao, W. Zheng, X. Wang, H. Zhang, X. Cui, and H. Wang, Sci. Rep. 3, 2986 (2013).
11.
11. G. Chen, S. S. Liaw, B. Li, Y. Xu, M. Dunwell, S. Deng, H. Fan, and H. Luo, J. Power Sources 251, 338 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2013.11.070
12.
12. H. Wang, H. S. Casalongue, Y. Liang, and H. Dai, J. Am. Chem. Soc. 132, 7472 (2010).
http://dx.doi.org/10.1021/ja102267j
13.
13. H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, and G. W. Yang, Nat. Commun. 4, 1894 (2013).
http://dx.doi.org/10.1038/ncomms2932
14.
14. J. Wang, Y. Song, Z. Li, Q. Liu, J. Zhou, X. Jing, M. Zhang, and Z. Jiang, Energy & Fuels 24, 6463 (2010).
http://dx.doi.org/10.1021/ef101150b
15.
15. L. Wang, D. Wang, X. Y. Dong, Z. J. Zhang, X. F. Pei, X. J. Chen, B. Chen, and J. Jin, Chem. Commun. (Camb). 47, 3556 (2011).
http://dx.doi.org/10.1039/c0cc05420h
16.
16. X. Dong, L. Wang, D. Wang, C. Li, and J. Jin, Langmuir 28, 293 (2012).
http://dx.doi.org/10.1021/la2038685
17.
17. W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, and L. Liu, ACS Appl. Mater. Interfaces 5, 5443 (2013).
http://dx.doi.org/10.1021/am4003843
18.
18. S. Huang, G.-N. Zhu, C. Zhang, W. W. Tjiu, Y.-Y. Xia, and T. Liu, ACS Appl. Mater. Interfaces 4, 2242 (2012).
http://dx.doi.org/10.1021/am300247x
19.
19. Z. Gao, J. Wang, Z. Li, W. Yang, and B. Wang, Chem. Mater. 23, 3509 (2011).
http://dx.doi.org/10.1021/cm200975x
20.
20. Z. Lu, W. Zhu, X. Lei, G. R. Williams, D. O’Hare, Z. Chang, X. Sun, and X. Duan, Nanoscale 4, 3640 (2012).
http://dx.doi.org/10.1039/c2nr30617d
21.
21. L. Zhang, X. Zhang, L. Shen, B. Gao, L. Hao, X. Lu, F. Zhang, B. Ding, and C. Yuan, J. Power Sources 199, 395 (2012).
http://dx.doi.org/10.1016/j.jpowsour.2011.10.056
22.
22. J. Yang, C. Yu, X. Fan, Z. Ling, J. Qiu, and Y. Gogotsi, J. Mater. Chem. A 1, 1963 (2013).
http://dx.doi.org/10.1039/c2ta00832g
23.
23. Q. Wang and D. O’Hare, Chem. Rev. 112, 4124 (2012).
http://dx.doi.org/10.1021/cr200434v
24.
24. X.-M. Liu, Y.-H. Zhang, X.-G. Zhang, and S.-Y. Fu, Electrochim. Acta 49, 3137 (2004).
http://dx.doi.org/10.1016/j.electacta.2004.02.028
25.
25. M. T. Pettes, H. Ji, R. S. Ruoff, and L. Shi, Nano Lett. 12, 2959 (2012).
http://dx.doi.org/10.1021/nl300662q
26.
26. S. Khamlich, A. Bello, M. Fabiane, B. D. Ngom, and N. Manyala, J. Solid State Electrochem. 17, 2879 (2013).
http://dx.doi.org/10.1007/s10008-013-2206-0
27.
27. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, and P. Chen, ACS Nano 6, 3206 (2012).
http://dx.doi.org/10.1021/nn300097q
28.
28. U. M. Patil, J. S. Sohn, S. B. Kulkarni, S. C. Lee, H. G. Park, K. V. Gurav, J. H. Kim, and S. C. Jun, ACS Appl. Mater. Interfaces 6, 2450 (2014).
http://dx.doi.org/10.1021/am404863z
29.
29. Y. Song, J. Wang, Z. Li, D. Guan, T. Mann, Q. Liu, M. Zhang, and L. Liu, Microporous Mesoporous Mater. 148, 159 (2012).
http://dx.doi.org/10.1016/j.micromeso.2011.08.013
30.
30. Y. Tao, L. Ruiyi, L. Zaijun, L. Junkang, W. Guangli, and G. Zhiquo, RSC Adv. 3, 19416 (2013).
http://dx.doi.org/10.1039/c3ra42806k
31.
31. G. Hu and D. O’Hare, J. Am. Chem. Soc. 127, 17808 (2005).
http://dx.doi.org/10.1021/ja0549392
32.
32. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105, 1025 (2005).
http://dx.doi.org/10.1021/cr030063a
33.
33. L.-S. Zhong, J.-S. Hu, H.-P. Liang, A.-M. Cao, W.-G. Song, and L.-J. Wan, Adv. Mater. 18, 2426 (2006).
http://dx.doi.org/10.1002/adma.200600504
34.
34. L. Xu, Y. Ding, C. Chen, L. Zhao, C. Rimkus, R. Joesten, and S. L. Suib, 308 (2008).
35.
35. S. J. Chae, F. Güneş, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, Adv. Mater. 21, 2328 (2009).
http://dx.doi.org/10.1002/adma.200803016
36.
36. W. L. Bragg, in Proc. Camb. Philol. Soc. (1913), pp. 4357.
37.
37. G. Brindley and S. Kikkawa, Thermochim. Acta 2, 385 (1978).
http://dx.doi.org/10.1016/0040-6031(78)85056-4
38.
38. J. Olanrewaju, B. Newalkar, C. Mancino, and S. Komarneni, Mater. Lett. 307 (2000).
http://dx.doi.org/10.1016/S0167-577X(00)00123-3
39.
39. E. Kanezaki, K. Kinugawa, and Y. Ishikawa, Chem. Phys. Lett. 226, 325 (1994).
http://dx.doi.org/10.1016/0009-2614(94)00734-9
40.
40. S. Velu, V. Ramkumar, A. Narayanan, and C. Swamy, J. Mater. Sci. 32, 957 (1997).
http://dx.doi.org/10.1023/A:1018561918863
41.
41. A. Bello, O. O. Fashedemi, M. Fabiane, J. N. Lekitima, K. I. Ozoemena, and N. Manyala, Electrochim. Acta 114, 48 (2013).
http://dx.doi.org/10.1016/j.electacta.2013.09.134
42.
42. L. Zhang, J. Wang, J. Zhu, X. Zhang, K. San Hui, and K. N. Hui, J. Mater. Chem. A 1, 9046 (2013).
http://dx.doi.org/10.1039/c3ta11755c
43.
43. H. Saikia, N. Sarmah, and J. N. Ganguli, Bull. Catal. Soc. India 11, 1 (2012).
44.
44. B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao, and L. Liu, J. Power Sources 246, 747 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2013.08.035
45.
45. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, J. Phys. Chem. C 112, 8192 (2008).
http://dx.doi.org/10.1021/jp710931h
46.
46. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
47.
47. J. Yu, J. C. Yu, W. Ho, M. K.-P. Leung, B. Cheng, G. Zhang, and X. Zhao, Appl. Catal. A Gen. 255, 309 (2003).
http://dx.doi.org/10.1016/S0926-860X(03)00570-2
48.
48. Z. Wang, X. Zhang, J. Wang, L. Zou, Z. Liu, and Z. Hao, J. Colloid Interface Sci. 396, 251 (2013).
http://dx.doi.org/10.1016/j.jcis.2013.01.013
49.
49. M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanoscale 5, 72 (2013).
http://dx.doi.org/10.1039/c2nr32040a
50.
50. H. KuanXin, Z. Xiaogang, and L. Juan, Electrochim. Acta 51, 1289 (2006).
http://dx.doi.org/10.1016/j.electacta.2005.06.020
51.
51. V. Khomenko, E. Frackowiak, and F. Béguin, Electrochim. Acta 50, 2499 (2005).
http://dx.doi.org/10.1016/j.electacta.2004.10.078
52.
52. Z. J. Lao, K. Konstantinov, Y. Tournaire, S. H. Ng, G. X. Wang, and H. K. Liu, J. Power Sources 162, 1451 (2006).
http://dx.doi.org/10.1016/j.jpowsour.2006.07.060
http://aip.metastore.ingenta.com/content/aip/journal/adva/4/9/10.1063/1.4896125
Loading
/content/aip/journal/adva/4/9/10.1063/1.4896125
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/4/9/10.1063/1.4896125
2014-09-17
2016-09-27

Abstract

In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g−1 at a current density of 1 A g−1 and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/4/9/1.4896125.html;jsessionid=1zU8N0Fwe__IPl5wnar00YTI.x-aip-live-02?itemId=/content/aip/journal/adva/4/9/10.1063/1.4896125&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/4/9/10.1063/1.4896125&pageURL=http://scitation.aip.org/content/aip/journal/adva/4/9/10.1063/1.4896125'
Right1,Right2,Right3,