Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. B. Conway, J. Electrochem. Soc. 138, 1539 (1991).
2. C. Liu, F. Li, L.-P. Ma, and H.-M. Cheng, Adv. Mater. 22, E28 (2010).
3. A. Burke, J. Power Sources 91, 37 (2000).
4. P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).
5. A. Bello, O. O. Fashedemi, J. N. Lekitima, M. Fabiane, D. Dodoo-Arhin, K. I. Ozoemena, Y. Gogotsi, A. T. Charlie Johnson, and N. Manyala, AIP Adv. 3, 082118 (2013).
6. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J. R. McDonough, X. Cui, Y. Cui, and Z. Bao, Nano Lett. 11, 2905 (2011).
7. D. Liu, X. Wang, X. Wang, W. Tian, J. Liu, C. Zhi, D. He, Y. Bando, and D. Golberg, J. Mater. Chem. A 1, 1952 (2013).
8. A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, and N. Manyala, J. Mater. Sci. 40, 6707 (2013).
9. D.-W. Wang, F. Li, and H.-M. Cheng, J. Power Sources 185, 1563 (2008).
10. C. Zhao, W. Zheng, X. Wang, H. Zhang, X. Cui, and H. Wang, Sci. Rep. 3, 2986 (2013).
11. G. Chen, S. S. Liaw, B. Li, Y. Xu, M. Dunwell, S. Deng, H. Fan, and H. Luo, J. Power Sources 251, 338 (2014).
12. H. Wang, H. S. Casalongue, Y. Liang, and H. Dai, J. Am. Chem. Soc. 132, 7472 (2010).
13. H. B. Li, M. H. Yu, F. X. Wang, P. Liu, Y. Liang, J. Xiao, C. X. Wang, Y. X. Tong, and G. W. Yang, Nat. Commun. 4, 1894 (2013).
14. J. Wang, Y. Song, Z. Li, Q. Liu, J. Zhou, X. Jing, M. Zhang, and Z. Jiang, Energy & Fuels 24, 6463 (2010).
15. L. Wang, D. Wang, X. Y. Dong, Z. J. Zhang, X. F. Pei, X. J. Chen, B. Chen, and J. Jin, Chem. Commun. (Camb). 47, 3556 (2011).
16. X. Dong, L. Wang, D. Wang, C. Li, and J. Jin, Langmuir 28, 293 (2012).
17. W. Yang, Z. Gao, J. Wang, J. Ma, M. Zhang, and L. Liu, ACS Appl. Mater. Interfaces 5, 5443 (2013).
18. S. Huang, G.-N. Zhu, C. Zhang, W. W. Tjiu, Y.-Y. Xia, and T. Liu, ACS Appl. Mater. Interfaces 4, 2242 (2012).
19. Z. Gao, J. Wang, Z. Li, W. Yang, and B. Wang, Chem. Mater. 23, 3509 (2011).
20. Z. Lu, W. Zhu, X. Lei, G. R. Williams, D. O’Hare, Z. Chang, X. Sun, and X. Duan, Nanoscale 4, 3640 (2012).
21. L. Zhang, X. Zhang, L. Shen, B. Gao, L. Hao, X. Lu, F. Zhang, B. Ding, and C. Yuan, J. Power Sources 199, 395 (2012).
22. J. Yang, C. Yu, X. Fan, Z. Ling, J. Qiu, and Y. Gogotsi, J. Mater. Chem. A 1, 1963 (2013).
23. Q. Wang and D. O’Hare, Chem. Rev. 112, 4124 (2012).
24. X.-M. Liu, Y.-H. Zhang, X.-G. Zhang, and S.-Y. Fu, Electrochim. Acta 49, 3137 (2004).
25. M. T. Pettes, H. Ji, R. S. Ruoff, and L. Shi, Nano Lett. 12, 2959 (2012).
26. S. Khamlich, A. Bello, M. Fabiane, B. D. Ngom, and N. Manyala, J. Solid State Electrochem. 17, 2879 (2013).
27. X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M. B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, and P. Chen, ACS Nano 6, 3206 (2012).
28. U. M. Patil, J. S. Sohn, S. B. Kulkarni, S. C. Lee, H. G. Park, K. V. Gurav, J. H. Kim, and S. C. Jun, ACS Appl. Mater. Interfaces 6, 2450 (2014).
29. Y. Song, J. Wang, Z. Li, D. Guan, T. Mann, Q. Liu, M. Zhang, and L. Liu, Microporous Mesoporous Mater. 148, 159 (2012).
30. Y. Tao, L. Ruiyi, L. Zaijun, L. Junkang, W. Guangli, and G. Zhiquo, RSC Adv. 3, 19416 (2013).
31. G. Hu and D. O’Hare, J. Am. Chem. Soc. 127, 17808 (2005).
32. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chem. Rev. 105, 1025 (2005).
33. L.-S. Zhong, J.-S. Hu, H.-P. Liang, A.-M. Cao, W.-G. Song, and L.-J. Wan, Adv. Mater. 18, 2426 (2006).
34. L. Xu, Y. Ding, C. Chen, L. Zhao, C. Rimkus, R. Joesten, and S. L. Suib, 308 (2008).
35. S. J. Chae, F. Güneş, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, Adv. Mater. 21, 2328 (2009).
36. W. L. Bragg, in Proc. Camb. Philol. Soc. (1913), pp. 4357.
37. G. Brindley and S. Kikkawa, Thermochim. Acta 2, 385 (1978).
38. J. Olanrewaju, B. Newalkar, C. Mancino, and S. Komarneni, Mater. Lett. 307 (2000).
39. E. Kanezaki, K. Kinugawa, and Y. Ishikawa, Chem. Phys. Lett. 226, 325 (1994).
40. S. Velu, V. Ramkumar, A. Narayanan, and C. Swamy, J. Mater. Sci. 32, 957 (1997).
41. A. Bello, O. O. Fashedemi, M. Fabiane, J. N. Lekitima, K. I. Ozoemena, and N. Manyala, Electrochim. Acta 114, 48 (2013).
42. L. Zhang, J. Wang, J. Zhu, X. Zhang, K. San Hui, and K. N. Hui, J. Mater. Chem. A 1, 9046 (2013).
43. H. Saikia, N. Sarmah, and J. N. Ganguli, Bull. Catal. Soc. India 11, 1 (2012).
44. B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao, and L. Liu, J. Power Sources 246, 747 (2014).
45. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, J. Phys. Chem. C 112, 8192 (2008).
46. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
47. J. Yu, J. C. Yu, W. Ho, M. K.-P. Leung, B. Cheng, G. Zhang, and X. Zhao, Appl. Catal. A Gen. 255, 309 (2003).
48. Z. Wang, X. Zhang, J. Wang, L. Zou, Z. Liu, and Z. Hao, J. Colloid Interface Sci. 396, 251 (2013).
49. M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanoscale 5, 72 (2013).
50. H. KuanXin, Z. Xiaogang, and L. Juan, Electrochim. Acta 51, 1289 (2006).
51. V. Khomenko, E. Frackowiak, and F. Béguin, Electrochim. Acta 50, 2499 (2005).
52. Z. J. Lao, K. Konstantinov, Y. Tournaire, S. H. Ng, G. X. Wang, and H. K. Liu, J. Power Sources 162, 1451 (2006).

Data & Media loading...


Article metrics loading...



In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g−1 at a current density of 1 A g−1 and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd