Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. F. Nie and B. C. Muddle, Acta. meter. 48, 1691 (2000).
2. B. L. Mordike, Materials Science and Engineering A324, 103 (2002).
3. M. Hisa, J. C. Barry, and G. L. Dunlop, Philosophical Magazine A 82, 497 (2002).
4. A. R. Wu and C. Q. Xia, Materials & Design 28, 1963 (2007).
5. S. F. Fan, Chemical Propellants & Polymeric Materials 8, 15 (2010).
6. K. Aono, S. Orimo, and H. Fujii, Journal of Alloys and Compounds 309, L1 (2000).
7. K. Kadir, D. Noreus, and I. Yamashita, Journal of Alloys and Compounds 345, 140 (2002).
8. Z. M. Wang, H. Y. Zhou, G. Cheng, Z. F. Gu, and A. B. Yu, Journal of Alloys and Compounds 384, 279 (2004).
9. Z. M. Wang, C. Ni, H. Zhou, and Q. Yao, Materials Characterization 59, 422 (2008).
10. R. V. Denys, A. B. Riabov, R. Černý, I. V. Koval'chuk, and I. Y. Zavaliy, Journal of Solid State Chemistry 187, 1 (2012).
11. V. V. Shtender, R. V. Denys, V. Paul-Boncour, A. B. Riabov, and I. Y. Zavaliy, Journal of Alloys and Compounds 603, 7 (2014).
12. Q. R. Yao, H. Y. Zhou, and Z. M. Wang, Journal of Alloys and Compounds 421, 117 (2006).
13. O. H. Herrera, A. Aburto, and E. Orgaz, Physical Review B 80, 165118 (2009).
14. J. W. Wang, F. Yang, T. W. Fan, B. Y. Tang, L. M. Peng, and W. J. Ding, Physica B: Condensed Matter 406, 1330 (2011).
15. J. G. Niu, H. E. Xiang, X. P. Dong, L. Guan, and F. Xie, Advanced Materials Research 152–153, 1632 (2011).
16. M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, and M. C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).
17. J. Perdew, A. Ruzsinszky, G. Csonka, O. Vydrov, G. Scuseria, L. Constantin, X. Zhou, and K. Burke, Physical Review Letters 100, 136406 (2008).
18. J. P. Perdew, K. Burke, and M. Ernzerhof, Physical Review Letters 77, 3865 (1996).
19. H. J. Monkhorst and J. D. Pack, Physical Review B 13, 5188 (1976).
20. N. Arıkan, A. İyigör, A. Candan, Ş. Uğur, Z. Charifi, H. Baaziz, and G. Uğur, Journal of Materials Science 49, 4180 (2014).
21. J. Wang, S. Yip, S. Phillpot, and D. Wolf, Physical Review Letters 71, 4182 (1993).
22. Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Physical Review B 76,054115 (2007).
23. M. A. Blanco, E. Francisco, and V. Luaña, Computer Physics Communications 158, 57 (2004).
24. R. Li, J. Shen, and F. Tian, Computational Materials Science (2014).
25. J. Prigent and M. Gupta, Journal of Alloys and Compounds 446–447, 90 (2007).
26. C. Wolverton and V. Ozoliņš, Physical Review B 73, 144104 (2006).
27. Z. S. Nong, J. C. Zhu, X. W. Yang, Y. Cao, Z. H. Lai, Y. Liu, and W. Sun, Solid State Sciences 32, 1 (2014).
28. R. Hill, Proc. Phys. Soc. A 65, 349 (1952).
29. J. Chang, G. P. Zhao, X. L. Zhou, K. Liu, and L. Y. Lu, J Appl Phys 112, 83519 (2012).
30. H. Xiang, Z. Feng, and Y. Zhou, Journal of the European Ceramic Society 34, 1809 (2014).
31. Q. Chen, Z. Huang, Z. Zhao, and C. Hu, Computational Materials Science 67, 196 (2013).
32. H. Guo, M. Zhang, J. Han, H. Zhang, and N. Song, Physica B: Condensed Matter 407, 2262 (2012).
33. S. Shang, Y. Wang, R. Arroyave, and Z.-K. Liu, Physical Review B 75, 092101 (2007).
34. S. Huang, C. H. Zhang, R. Z. Li, J. Shen, and N. X. Chen, Intermetallics 51, 24 (2014).
35. X. Y. Zhang, J. Q. Qin, J. L. Ning, X. W. Sun, X. T. Li, M. Z. Ma, and R. P. Liu, Journal of Applied Physics 114, 183517 (2013).

Data & Media loading...


Article metrics loading...



The stability, electronic structures, elastic and thermal properties of the ternary YMgX (X=Co, Ni, Cu) compounds are investigated by first principle calculations in combination with the quasi-harmonic Debye model. The three compounds are predicted to be stable according to the formation enthalpies), elastic constants ( ) and phonon dispersion models. The elastic constants and polycrystalline elastic moduli reveal the relatively low anisotropy of these compounds. The electronic structures and bonding characters are analyzed by the electron densities of states and difference charge densities in the (110) plane. The comparisons between the phonon density of state and the quasi-harmonic Debye model imply the heat capacities ( ) and vibrational entropies () are close for YMgCo and YMgCu, whereas large deviation for YMgNi. A possible reason is that YMgNi has the slightly strong directional bondings, relative to YMgCo and YMgCu.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd